Search and Find

Book Title

Author/Publisher

Table of Contents

Show eBooks for my device only:

 

Chassis Handbook - Fundamentals, Driving Dynamics, Components, Mechatronics, Perspectives

of: Bernd Heißing, Metin Ersoy

Vieweg+Teubner (GWV), 2010

ISBN: 9783834897893 , 611 Pages

Format: PDF, Read online

Copy protection: DRM

Windows PC,Mac OSX,Windows PC,Mac OSX geeignet für alle DRM-fähigen eReader Apple iPad, Android Tablet PC's Read Online for: Windows PC,Mac OSX,Linux

Price: 245,30 EUR



More of the content

Chassis Handbook - Fundamentals, Driving Dynamics, Components, Mechatronics, Perspectives


 

Preface

5

Contributors

6

Contents

8

1 Introduction and Fundamentals

23

1.1 History, Definition, Function, and Significance

24

1.1.1 History

24

1.1.2 Definition and Scope

29

1.1.3 Purpose and Significance

30

1.2 Chassis Design

31

1.2.1 Vehicle Classification

31

1.2.2 Powertrain Configurations

32

1.2.3 Chassis Composition

35

1.2.4 Trends in Chassis Composition

35

1.3 Chassis Layout

37

1.3.1 Chassis Requirements

38

1.3.2 Layout of Suspension Kinematics

40

1.3.3 Suspension Kinematics

40

1.3.3.1 Suspension Parameters Relative to Vehicle

40

1.3.3.2 Roll and Pitch Center

42

1.3.3.3 Wheel Travel

42

1.3.3.4 Wheel Travel Parameters

43

1.3.3.5 Steering Kinematic Parameters

46

1.3.3.6 Kinematic Parameters of Current Vehicles

50

1.3.3.7 Wheel Travel Curves

50

1.3.3.8 Wheel Kinematic Calculation Software

53

1.3.4 Elastokinematics and Component Compliances in Suspension Design

53

1.3.5 Target Parameter Values

54

1.3.6 Suspension Composition

55

2 Driving Dynamics

57

2.1 Driving Resistances and Energy Requirements

57

2.1.1 Driving Resistances

57

2.1.1.1 Rolling Resistance

57

2.1.1.2 Effect of Road Surface on Rolling Resistance FR,Tr

62

2.1.1.3 Aerodynamic Drag FA

65

2.1.1.4 Climbing Resistance FC

66

2.1.1.5 Inertial Resistance FI

67

2.1.1.6 Total Driving Resistance

68

2.1.2 Crosswind Response Behavior

68

2.1.3 Performance and Energy Requirements

71

2.1.4 Fuel Consumption

72

2.2 Tire Traction and Force Transfer to the Roadway

74

2.2.1 The Physics of Tire Traction and Force Transfer

76

2.2.1.1 Acceleration and Braking

79

2.2.1.2 Cornering

80

2.2.2 Detailed Tire Forces

85

2.3 Longitudinal Dynamics

87

2.3.1 Acceleration and Braking

87

2.3.1.1 Anti-Dive

87

2.3.1.2 Anti-Lift (Anti-Squat)

88

2.3.1.3 Load Changes During Straightline Driving

89

2.4 Vertical Dynamics

89

2.4.1 Springs

89

2.4.1.1 Spring Ratio

90

2.4.1.2 Natural (Eigen) Frequencies

90

2.4.2 Vibration Dampers

91

2.4.3 Excitations from the Roadway

92

2.4.3.1 Harmonic Excitations

92

2.4.3.2 Periodic Irregularities

93

2.4.3.3 Stochastic (Random) Irregularities

93

2.4.3.4 Spectral Density of Road Surface Irregularities

94

2.4.3.5 Measured Road Surface Irregularities

95

2.4.4 Tires as Spring/Damper Elements

95

2.4.5 Suspension Models

96

2.4.5.1 Single-Mass System

96

2.4.5.2 Dual-Mass System

97

2.4.5.3 Expansion of the Model to Include Seat Suspension Effects

97

2.4.5.4 Single-Track Suspension Model

98

2.4.5.5 Two-Track Suspension Model

99

2.4.6 Parameter Variation

101

2.4.7 The Roadway/Vehicle Connection

103

2.4.7.1 Spectral Density of Vehicle Body Accelerations

104

2.4.7.2 Spectral Density of Dynamic Wheel Loads

106

2.4.8 Human Oscillation Evaluation

106

2.4.9 Conclusions from the Fundamentalsof Vertical Dynamics

108

2.5 Lateral Dynamics

108

2.5.1 Handling Requirements

108

2.5.2 Steering Kinematics

109

2.5.2.1 Static Steering Layout

109

2.5.2.2 Dynamic Steering Layout

110

2.5.3 Vehicle Modeling

111

2.5.3.1 Simple Single-Track (Bicycle) Model

111

2.5.3.2 Simple Vehicle Dynamics

112

2.5.3.3 Understeer and Oversteer

115

2.5.3.4 Expanded Single-Track Model with Rear-Wheel Steering

116

2.5.3.5 Nonlinear Single-Track Model

117

2.5.3.6 Analysis of Transient Behavior Using the Simple Single-Track Model

119

2.5.3.7 The Vehicle as Part of a Closed-Loop System

121

2.5.3.8 Dynamic Behavior of the Vehicle as Part of a Closed-Loop System

122

2.5.3.9 Slip Angle Compensation Using Rear-Wheel Steering

125

2.5.3.10 Investigation of Frequency Response for Varied Vehicle Configurations

127

2.5.3.11 Dual-Track Model

128

2.5.3.12 Parameter Variation

131

2.6 General Vehicle Dynamics

135

2.6.1 Interactions between Vertical, Longitudinal, and Lateral Dynamics

135

2.7 Chassis Control Systems

140

2.7.1 Definition of Terms

140

2.7.2 Limitations of the Passive Vehicle – Basic Goal Conflicts

140

2.7.3 The Driver-Vehicle Control Loop

141

2.7.4 Division of Chassis Control Systems into Domains

142

2.7.4.1 Longitudinal Dynamics

142

2.7.4.2 Lateral Dynamics

143

2.7.4.3 Vertical Dynamics

143

2.7.5 Requirements for Chassis Control Systems

143

2.8 Handling Characteristics

144

2.8.1 Handling Evaluation

144

2.8.2 Driving Maneuvers

146

2.8.3 Parameter Range of Maneuvers

146

2.8.4 Tuning Procedures

149

2.8.4.1 Tuning Procedures forSteady-State Steering Behavior

149

2.8.5 Subjective Handling Evaluation

149

2.8.5.1 Evaluation Methods and Representation

152

2.8.5.2 Acceleration (Driveoff) Behavior

152

2.8.5.3 Braking Behavior

152

2.8.5.4 Steering Behavior

154

2.8.5.5 Cornering Behavior

156

2.8.5.6 Straightline Driving Behavior

156

2.8.5.7 Ride Comfort

158

2.8.6 Objective Handling Evaluations

159

2.8.6.1 Measurement Parameters

159

2.8.6.2 Acceleration (Driveoff) Behavior

159

2.8.6.3 Braking Behavior

160

2.8.6.4 Steering Behavior

161

2.8.6.5 Cornering Behavior

163

2.8.6.6 Straightline Driving Behavior

165

2.8.6.7 Ride Comfort

167

2.9 Active and Passive Safety

167

3 Chassis Components

170

3.1 Chassis Structuring

170

3.1.1 Classification by Function

170

3.1.2 Modular Chassis Structure

171

3.1.3 Chassis Components

171

3.2 Drivetrain

172

3.2.1 Configurations

172

3.2.2 Axle Drives

172

3.2.2.1 Differentials

172

3.2.2.2 Locking Differentials

172

3.2.2.3 Active Differentials

174

3.2.2.4 Torque Vectoring

174

3.2.3 Four-wheel-drive (All-wheel-drive)

175

3.2.4 Control Strategies

176

3.2.5 Half-shafts

177

3.3 Wheel Brakes and Braking

178

3.3.1 Fundamentals and Requirements

178

3.3.2 Types of Braking Systems

179

3.3.2.1 General Requirements

180

3.3.3 Legal Regulations

181

3.3.4 Brake System Design

181

3.3.4.1 Brake Force Distribution

181

3.3.4.2 Dimensioning

183

3.3.5 Braking Torque and Dynamics

183

3.3.5.1 Braking Torque

183

3.3.5.2 Braking Dynamics

184

3.3.6 Brake System Components

185

3.3.6.1 Brake Calipers

185

3.3.6.2 Brake Discs

189

3.3.6.3 Brake Linings

190

3.3.6.4 Drum Brakes

190

3.3.6.5 Brake Fluid

193

3.3.6.6 Brake Force Booster

193

3.3.6.7 Tandem Master Cylinder

194

3.3.6.8 Human-Machine Interface (HMI)

194

3.3.7 Electronic Braking Control Systems

198

3.3.7.1 Brake Assistant (MBA, EBA, HBA)

198

3.3.7.2 Wheel Speed Sensors

201

3.3.7.3 Electronic Braking System Functions

202

3.3.7.4 Electrohydraulic Brake (EHB)

208

3.3.7.5 Electromechanical Brake (EMB)

209

3.3.7.6 Networked Chassis

211

3.4 Steering Systems

212

3.4.1 Requirements and Designs

212

3.4.2 Hydraulic Rack and Pinion Steering

215

3.4.2.1 Technology and Function

215

3.4.2.2 Design and Components

218

3.4.3 Steering Tie Rods

221

3.4.4 Steering Driveline and Steering Column

224

3.4.4.1 Components and Function Modules

224

3.4.4.2 Design and Testing

226

3.4.4.3 Crash Requirements and Energy Absorption Mechanisms

227

3.4.4.4 Future Prospects and Modularization

230

3.4.5 Electromechanical Steering Systems

230

3.4.5.1 Design Concepts

230

3.4.5.2 Configuration and Advantages

233

3.4.6 Active Steering and Superposition Steering

236

3.4.6.1 Functional Principles and Configuration

236

3.4.6.2 Functions – Present and Future

238

3.4.7 Rack and Pinion Power Steering with Torque and Angle Actuators

240

3.4.8 Rear-wheel and Four-wheel Steering Systems

241

3.4.9 Steer-by-wire and Single-wheel Steering Systems

243

3.4.9.1 System Configuration and Components

244

3.4.9.2 Technology, Advantages, Opportunities

246

3.5 Springs and Stabilizers

247

3.5.1 The Purpose of the Spring System

247

3.5.2 Design and Calculation of Steel Springs

247

3.5.2.1 Leaf Springs

248

3.5.2.2 Torsion Bar Springs

251

3.5.2.3 Stabilizers

252

3.5.2.4 Coil Springs

260

3.5.3 Spring Materials

268

3.5.4 Steel Spring Manufacture

270

3.5.4.1 Hot Forming

270

3.5.4.2 Heat Treating Hot Formed Springs

272

3.5.4.3 Cold Forming

272

3.5.4.4 Shot Peening

273

3.5.4.5 Plastification

274

3.5.4.6 Corrosion Protection

274

3.5.4.7 Final Inspection and Marking

275

3.5.5 Roll Control Using Stabilizers

275

3.5.5.1 Passive Stabilizers

275

3.5.5.2 Switchable Off-Road Stabilizers

276

3.5.5.3 Switchable On-Road Stabilizers

276

3.5.5.4 Semi-Active Stabilizers

276

3.5.5.5 Active Stabilizers

278

3.5.6 Springs for use with AutomaticLeveling Systems

278

3.5.6.1 Purpose and Configurations

278

3.5.6.2 Leveling Using a Gas Spring

279

3.5.7 Hydropneumatic Springs

282

3.5.7.1 Self-Pumping Hydropneumatic Spring/Damper Elements

282

3.5.8 Air Springs

285

3.6 Damping

287

3.6.1 The Purpose of Damping

287

3.6.2 Telescopic Shock Absorber Designs

291

3.6.2.1 Twin-Tube Shock Absorbers

291

3.6.2.2 Monotube Shock Absorbers

292

3.6.2.3 Comparison of Damper Types

292

3.6.2.4 Special Designs

293

3.6.3 Coilover Shock Absorber and Strut

293

3.6.4 Shock Absorber Calculations

295

3.6.5 Additional Damper Features

296

3.6.5.1 Rebound and Compression Bump Stops

296

3.6.5.2 Stroke-Dependent Damping

298

3.6.5.3 Amplitude-Selective Damping

300

3.6.6 Damper End Mounts

301

3.6.7 Semi-Active Damping and Spring Functions

302

3.6.8 Alternative Damping Concepts

306

3.6.8.1 Magneto-Rheological (MRF) Dampers

306

3.6.8.2 Conjoined Damping

307

3.6.8.3 Load-Dependent Damping (PDC)

307

3.7 Wheel Control

308

3.7.1 Purpose, Requirements, and System Structure

308

3.7.2 Suspension Links: Purpose, Requirements, and System Structure

309

3.7.2.1 Control Arms (Control Links)

310

3.7.2.2 Support Links

311

3.7.2.3 Auxiliary Links

311

3.7.2.4 Suspension Link Requirements

312

3.7.2.5 Suspension Link Materials

312

3.7.2.6 Suspension Link Manufacturing Processes

313

3.7.2.7 Manufacturing Methods for Aluminum Suspension Links

319

3.7.2.8 Configuration and Optimization of Suspension Links

321

3.7.2.9 Integration of the Joints into the Link

321

3.7.3 Ball Joints

322

3.7.3.1 Purpose and Requirements

323

3.7.3.2 Types of Ball Joints

323

3.7.3.3 Ball Joint Components

324

3.7.3.4 Bearing System (Ball Race, Grease)

327

3.7.3.5 Sealing System (Sealing Boot, Retaining Ring)

330

3.7.3.6 Suspension Ball Joints

333

3.7.3.7 Preloaded Ball Joints

334

3.7.3.8 Cross Axis Ball Joints

335

3.7.4 Rubber Bushings

337

3.7.4.1 Purpose, Requirements, and Function

337

3.7.4.2 Types of Rubber Bushings

339

3.7.5 Pivot Joints

341

3.7.6 Rotational Sliding Joints (Trunnion Joints)

342

3.7.7 Chassis Subframes

343

3.7.7.1 Purpose and Requirements

343

3.7.7.2 Types and Designs

343

3.8 Wheel Carriers and Bearings

346

3.8.1 Types of Wheel Carriers

346

3.8.2 Wheel Carrier Materials and Manufacturing Methods

348

3.8.3 Types of Wheel Bearings

349

3.8.3.1 Bearing Seals

352

3.8.3.2 Lubrication

352

3.8.3.3 ABS Sensors

353

3.8.4 Wheel Bearing Manufacturing

355

3.8.4.1 Rings and Flanges

355

3.8.4.2 Cages and Rolling Elements

356

3.8.4.3 Assembly

356

3.8.5 Requirements, Design, and Testing

356

3.8.5.1 Bearing Rotational Fatigue Strength

358

3.8.5.2 Component Strength and Tilt Stiffness

360

3.8.5.3 Verification by Testing

362

3.8.6 Future Prospects

363

3.9 Tires and Wheels

367

3.9.1 Tire Requirements

367

3.9.1.1 Properties and Performance

367

3.9.1.2 Legal Requirements

369

3.9.2 Types, Construction, and Materials

370

3.9.2.1 Tire Types

370

3.9.2.2 Tire Construction

371

3.9.2.3 Tire Materials

371

3.9.2.4 The Viscoelastic Properties of Rubber

372

3.9.3 Transmission of Forces between the Tire and the Road Surface

373

3.9.3.1 Supporting Force

373

3.9.3.2 Adhesion Behavior and Lateral Force Buildup

374

3.9.3.3 Tangential Forces: Driving and Braking

375

3.9.3.4 Sideslip, Lateral Forces, and Aligning Moments

375

3.9.3.5 Sideslip Stiffness

376

3.9.3.6 Tire Behavior under Slip

378

3.9.3.7 Tire Uniformity

379

3.9.4 Tire Simulation Models

379

3.9.4.1 Tire Models for Lateral Dynamics

379

3.9.4.2 Tire Models Using Finite Elements (FEM)

381

3.9.4.3 Tire Models for Vertical Dynamics

381

3.9.4.4 Tire Vibration Modes

382

3.9.4.5 Cavity Natural Frequencies

382

3.9.4.6 Full Tire Models

383

3.9.5 Modern Tire Technologies

385

3.9.5.1 Tire Sensors

385

3.9.5.2 Run-Flat Tires

387

3.9.5.3 Tires and Control Systems

388

3.9.5.4 High Performance (HP) and Ultra High Performance (UHP) Tires

389

3.9.6 Vehicle Testing and Measurement

390

3.9.6.1 Subjective Test Procedures

390

3.9.6.2 Objective Test Procedures for Longitudinal Adhesion

391

3.9.6.3 Objective Test Procedures for Lateral Adhesion

392

3.9.6.4 Acoustics

393

3.9.7 Laboratory Testing and Measurement Methods

393

3.9.7.1 Basic Tire Test Rig Designs

393

3.9.7.2 Strength Tests

394

3.9.7.3 Measuring Tire Characteristics Using a Test Rig

394

3.9.7.4 Measuring Tire Characteristics Using a Vehicle-Mounted Test Rig

394

3.9.7.5 Measuring Tire Rolling Resistance

395

3.9.7.6 Measuring Uniformity and Geometry

395

3.9.7.7 Roadway Measurement and Modeling

397

3.9.7.8 Power Loss Analysis

397

3.9.7.9 Tire Temperature Measurement

398

3.9.8 The Future of Tire Technology

399

3.9.8.1 Material Developments

399

3.9.8.2 Energy Saving Tires

399

4 Axles and Suspensions

403

4.1 Rigid Axles

405

4.1.1 The De Dion Driven Rigid Axle

407

4.1.2 Rigid Axles with Longitudinal Leaf Springs

407

4.1.3 Rigid Axles with Longitudinal and Lateral Links

408

4.1.4 Rigid Parabolic Axles with a Central Joint and Lateral Control Links

409

4.2 Semi-Rigid Axles

409

4.2.1 Twist Beam Axles

410

4.2.1.1 Torsion-Type Twist Beam Axles

411

4.2.1.2 Standard Twist Beam Axles

411

4.2.1.3 Coupling-Type Twist Beam Axles

412

4.2.2 The Dynamic Twist Beam Axle

412

4.3 Independent Suspension

413

4.3.1 Independent Suspension Kinematics

413

4.3.2 The Advantages of Independent Suspension

415

4.3.3 Single-Link Independent Suspension Systems

415

4.3.3.1 Trailing Link Independent Suspension

416

4.3.3.2 Semi-Trailing Link Independent Suspension

417

4.3.3.3 Screw-Link Independent Suspension

418

4.3.4 Two-Link Independent Suspension

418

4.3.4.1 Lateral-Longitudinal Swing Axles

418

4.3.4.2 Trapezoidal Link with One Lateral Link (Audi 100 Quattro)

419

4.3.4.3 Trapezoidal Link with One Flexible Lateral Link (Porsche Weissach Axle)

419

4.3.5 Three-Link Independent Suspension

419

4.3.5.1 Central Link Independent Suspension

419

4.3.5.2 Double Wishbone Independent Suspension

420

4.3.6 Four-Link Independent Suspension

422

4.3.6.1 Rear Axle Multi-Link Independent Suspension

422

4.3.6.2 Multi-Link Suspension with Two Lower Two-Point Links

423

4.3.6.3 Trapezoidal (Integral) Link Suspension

423

4.3.6.4 Two Longitudinal and Two Lateral Links

424

4.3.6.5 One Longitudinal and Three Lateral Links

424

4.3.6.6 One Diagonal and Three Lateral Links

425

4.3.7 Five-Link Independent Suspension

426

4.3.7.1 Five-Link Front Suspension (SLA with two Decomposed 3-Point Links)

426

4.3.7.2 Five-Link Rear Suspension

426

4.3.8 Strut-Type Suspension Systems

427

4.4 Front Axle Suspension

430

4.4.1 Front Axle Suspension System Requirements

430

4.4.2 Front Axle Components

432

4.4.3 Front Axle Suspension Types

432

4.4.3.1 McPherson with Upper Strut Brace

432

4.4.3.2 McPherson withOptimized Lower Control Arm

432

4.4.3.3 McPherson withDecomposed Lower Control Arm

432

4.4.3.4 McPherson with Two-Piece Wheel Carrier

433

4.4.3.5 Double Wishbone with Decomposed Control Arms

433

4.5 Rear Axle Suspension

434

4.5.1 Rear Axle Suspension Requirements

434

4.5.2 Rear Axle Components

434

4.5.3 Rear Axle Suspension Types

434

4.5.3.1 Non-Driven Rear Axles

434

4.5.3.2 Driven Rear Axles

434

4.5.4 ULSAS Rear Axle Benchmark

435

4.6 Design Catalog for Axle Type Selection

436

4.7 The Chassis as a Complete System

436

4.7.1 Front / Rear Axle Interaction

436

4.8 Future Suspension Systems

438

4.8.1 Axles of the Past 20 Years

438

4.8.2 Relative Popularity of Various Current Axle Designs

438

4.8.3 Future Axle Designs (Trends)

438

5 Ride Comfort and NVH

441

5.1 Fundamentals: NVH and the Human Body

441

5.1.1 Concepts and Definitions

441

5.1.2 Sources of Vibrations, Oscillations, and Noise

442

5.1.3 Limits of Human Perception

443

5.1.4 Human Comfort and Well-Being

444

5.1.5 Mitigation of Oscillation and Noise

445

5.2 Bonded Rubber Components

446

5.2.1 Bonded Rubber Component Functions

446

5.2.1.1 Transferring Forces

446

5.2.1.2 Enabling Defined Movements

446

5.2.1.3 Noise Isolation

447

5.2.1.4 Vibration Damping

448

5.2.2 The Specific Definition of Elastomeric Components

449

5.2.2.1 Force-Displacement Curves

449

5.2.2.2 Damping

449

5.2.2.3 Setting

450

5.3 Engine and Transmission Mounts

451

5.4 Chassis and Suspension Mounts and Bushings

455

5.4.1 Rubber Bushings

455

5.4.2 Sliding Bushings

456

5.4.3 Hydraulically-Damped Bushings (Hydro Bushings)

457

5.4.4 Chassis Subframe Mounts

460

5.4.5 Upper Strut Bearings and Damper Mounts

461

5.4.6 Twist Beam Axle Mounts

463

5.5 Future Component Designs

464

5.5.1 Sensors

465

5.5.2 Switchable Chassis Mounts

465

5.6 Computation Methods

466

5.7 Acoustic Evaluation ofBonded Rubber Components

467

6 Chassis Development

469

6.1 The Development Process

469

6.2 Project Management (PM)

475

6.3 The Planning and Definition Phase

475

6.3.1 Target Cascading

476

6.4 The Concept Phase

477

6.5 Computer-Aided Engineering

477

6.5.1 Multi-Body Simulation (MBS)

478

6.5.1.1 MBS Chassis and Suspension Models in ADAMS/Car

478

6.5.1.2 CAD Chassis Models and Multi-Body Systems

478

6.5.1.3 Multi-Body Simulation with Rigid and Flexible MBS

479

6.5.1.4 Multi-Body Simulations Using Whole-Vehicle, Chassis, and Axle Models

480

6.5.1.5 Effects of Manufacturing Tolerances on Kinematic Parameters

481

6.5.2 Finite Element Method (FEM)

482

6.5.2.1 Classification of Analyses

482

6.5.2.2 Strength Analyses

483

6.5.2.3 Stiffness Analyses

483

6.5.2.4 Natural Frequency Analyses

483

6.5.2.5 Service Life and Durability Analyses

484

6.5.2.6 Crash Simulations

484

6.5.2.7 Topology and Shape Optimization

484

6.5.2.8 Simulations of Manufacturing Processes

486

6.5.3 Whole-Vehicle Simulations

486

6.5.3.1 Vehicle Handling and Dynamic Simulations

486

6.5.3.2 Kinematics and Elastokinematics

486

6.5.3.3 Standard Load Cases

487

6.5.3.4 MBS Model Verification

488

6.5.3.5 NVH

488

6.5.3.6 Loads Management (Load Cascading from Systems to Components)

490

6.5.3.7 Whole-Vehicle Durability Simulations

494

6.5.3.8 Whole-Vehicle Handling Fingerprint

494

6.5.3.9 Specification of Elastokinematics Using Control-System Methods

495

6.5.4 3D Modeling Software (CAD)

496

6.5.5 Integrated Simulation Environment

497

6.5.5.1 Kinematic Analysis Using ABE Software

497

6.5.5.2 The Virtual Product Development Environment (VPE)

500

6.6 Series Development and Validation

502

6.6.1 Design

502

6.6.1.1 Component Design

503

6.6.1.2 Package Volume

504

6.6.1.3 Failure Mode and Effects Analysis (FMEA)

505

6.6.1.4 Tolerance Investigations

505

6.6.2 Validation

505

6.6.2.1 Prototypes

505

6.6.2.2 Validation Using Test Rigs

505

6.6.2.3 Roadway Simulation Test Rig

508

6.6.3 Whole-Vehicle Validation

509

6.6.4 Optimization and Fine-Tuning

510

6.7 Development ActivitiesDuring Series Production

510

6.8 Summary and Future Prospects

511

7 Chassis Control Systems

513

7.1 Chassis Electronics

513

7.2 Electronic Chassis ControlSystems

513

7.2.1 Domains

513

7.2.2 Longitudinal Dynamic Control Systems – Wheel Slip Regulation

514

7.2.2.1 Braking Control

514

7.2.2.2 Electronically-Controlled Center Differentials

514

7.2.2.3 Torque-On-Demand Transfer Cases

514

7.2.2.4 Electronically-ControlledAxle Differentials

515

7.2.2.5 Axle Drive for Lateral Torque Distribution

516

7.2.3 Lateral Dynamic Control Systems

517

7.2.3.1 Electric Power Steering Systems (EPS)

517

7.2.3.2 Superimposed Steering

518

7.2.3.3 Active Rear-Wheel Steering

518

7.2.3.4 Active Rear-Axle Kinematics

519

7.2.4 Vertical Dynamic Control Systems

519

7.2.4.1 Variable Dampers

519

7.2.4.2 Active Stabilizers

521

7.2.4.3 Active Leveling Systems

521

7.2.5 Safety Requirements

522

7.2.6 Bus Systems

523

7.2.6.1 CAN

523

7.2.6.2 FlexRay

523

7.3 System Networking

523

7.3.1 Vehicle Dynamic Control (VDC)

523

7.3.2 Torque Vectoring

525

7.3.3 Vertical Dynamic Management

526

7.4 Functional Integration

526

7.4.1 System Architecture

526

7.4.2 Standard Interfaces

527

7.4.3 Smart Actuators

528

7.5 Chassis Control System

528

7.5.1 Simulation Models

529

7.5.2 Hardware-in-the-Loop Simulation

530

7.6 Mechatronic Chassis Systems

531

7.6.1 Longitudinal Dynamics

531

7.6.1.1 Powertrain Systems

532

7.6.1.2 Braking Systems

534

7.6.2 Lateral Dynamics

536

7.6.2.1 Front-Wheel Steering Systems

536

7.6.2.2 Rear-Wheel Steering Systems

537

7.6.2.3 Roll Stabilization Systems

540

7.6.2.4 Active Kinematics

543

7.6.3 Vertical Dynamics

546

7.6.3.1 System Requirements

546

7.6.3.2 Classification of Vertical Dynamic Systems

546

7.6.3.3 Damping Systems

547

7.6.3.4 Active Leveling Systems

551

7.6.3.5 Current Active Spring Systems

552

7.6.3.6 Fully Active Integrated Suspension Systems

555

7.6.3.7 Pivots (Bushings, Joints, Mounts)

557

7.7 X-by-wire

559

7.7.1 Steer-by-wire

559

7.7.2 Brake-by-wire

560

7.7.2.1 Electrohydraulic Braking (EHB)

561

7.7.2.2 Electromechanical Braking(EMB) Systems

561

7.7.2.3 The ContiTeves Electromechanical Brake

562

7.7.2.4 Radial (Full-Contact) Disc Brakes

562

7.7.2.5 Wedge Brake

564

7.7.3 Leveling-by-wire

565

7.8 Driver Assistance Systems

565

7.8.1 Braking Assistance Systems

565

7.8.1.1 Safety-Relevant Braking Assistance

566

7.8.1.2 Comfort-Oriented Braking Assistance

567

7.8.1.3 Braking Assistance System Requirements

567

7.8.2 Distance Assistance Systems

568

7.8.3 Steering Assistance Systems

569

7.8.3.1 Steering Assistance Using Adaptive Assistance Torques

569

7.8.3.2 Steering Assistance Using Additional Steering Torque

569

7.8.3.3 Steering Assistance Using a Supplemental Steer Angle

570

7.8.3.4 Summary

571

7.8.4 Parking Assistance Systems

571

7.8.4.1 Introduction

571

7.8.4.2 Parking Space Recognition

571

7.8.4.3 Parallel Parking

573

7.8.4.4 Steering Actuators

574

8 The Future of Chassis Technology

577

8.1 Chassis System Concepts – Focus on Customer Value

577

8.1.1 Choosing Handling Behavior

577

8.1.2 Diversification of Vehicle Concepts – Stabilization of Chassis Concepts

579

8.1.2.1 Front Suspension as of 2004

579

8.1.2.2 Rear Suspension as of 2004

580

8.1.3 The Future of Chassis Subsystems and Components

580

8.1.3.1 The Future of Axle Drive Units

580

8.1.3.2 The Future of Braking Systems

581

8.1.3.3 The Future of Steering Systems

581

8.1.3.4 The Future of Suspension Spring Systems

581

8.1.3.5 The Future of Dampers

581

8.1.3.6 The Future of Wheel Control Components

581

8.1.3.7 The Future of Wheel Bearings

581

8.1.3.8 The Future of Tires and Wheels

581

8.2 Electronic Chassis Systems

581

8.2.1 Electronic Assistance Systems and Networking

581

8.2.2 Networking Chassis Control Systems

582

8.2.2.1 Peaceful Coexistence

582

8.2.2.2 Integral Control

583

8.2.2.3 Networked Control

583

8.2.2.4 Performance / Efficiency

584

8.2.2.5 System Safety

584

8.2.2.6 The Development Process

584

8.2.2.7 Data Transmission Requirements

585

8.2.2.8 Summary

585

8.3 The Future of X-by-Wire Systems

585

8.4 Intelligent and Predictive Future Chassis Systems

586

8.4.1 Sensors

587

8.4.2 Actuators

587

8.4.3 Predictive Driving

588

8.5 Hybrid Vehicles

590

8.6 The Rolling/Driving Chassis

591

8.7 The Vision of Autonomous Vehicle Control

592

8.8 Future Scenarios for Vehicle and Chassis Technology

593

8.9 Outlook

596

Index

599