Search and Find

Book Title

Author/Publisher

Table of Contents

Show eBooks for my device only:

 

The Finite Element Method in Engineering

The Finite Element Method in Engineering

of: S S RAO

Elsevier Trade Monographs, 2010

ISBN: 9780080952048 , 726 Pages

5. Edition

Format: PDF, ePUB, Read online

Copy protection: DRM

Windows PC,Mac OSX geeignet für alle DRM-fähigen eReader Apple iPad, Android Tablet PC's Apple iPod touch, iPhone und Android Smartphones Read Online for: Windows PC,Mac OSX,Linux

Price: 57,95 EUR



More of the content

The Finite Element Method in Engineering


 

Front Cover

1

The Finite Element Method in Engineering

4

Copyright

5

Dedication

6

Table of Contents

8

Preface

14

Approach of the Book

14

New to this Edition

14

Organization

15

Resources for Instructors

16

Acknowledgments

16

Part 1: Introduction

18

Chapter 1. Overview of Finite Element Method

20

1.1 Basic Concept

20

1.2 Historical Background

21

1.3 General Applicability of the Method

24

1.4 Engineering Applications of the Finite Element Method

26

1.5 General Description of the Finite Element Method

26

1.6 One-Dimensional Problems with Linear Interpolation Model

29

1.7 One-Dimensional Problems with Cubic Interpolation Model

41

1.8 Derivation of Finite Element Equations Using a Direct Approach

45

1.9 Commercial Finite Element Program Packages

57

1.10 Solutions Using Finite Element Software

57

References

59

Problems

60

Part 2: Basic Procedure

68

Chapter 2. Discretization of the Domain

70

2.1 Introduction

70

2.2 Basic Element Shapes

70

2.3 Discretization Process

73

2.4 Node Numbering Scheme

80

2.5 Automatic Mesh Generation

82

References

85

Problems

86

Chapter 3. Interpolation Models

92

3.1 Introduction

92

3.2 Polynomial Form of Interpolation Functions

94

3.3 Simplex, Complex, and Multiplex Elements

95

3.4 Interpolation Polynomial in Terms of Nodal Degrees of Freedom

95

3.5 Selection of the Order of the Interpolation Polynomial

97

3.6 Convergence Requirements

99

3.7 Linear Interpolation Polynomials in Terms of Global Coordinates

102

3.8 Interpolation Polynomials for Vector Quantities

113

3.9 Linear Interpolation Polynomials in Terms of Local Coordinates

116

3.10 Integration of Functions of Natural Coordinates

125

3.11 Patch Test

126

References

128

Problems

129

Chapter 4. Higher Order and Isoparametric Elements

136

4.1 Introduction

137

4.2 Higher Order One-Dimensional Elements

137

4.3 Higher Order Elements in Terms of Natural Coordinates

138

4.4 Higher Order Elements in Terms of Classical Interpolation Polynomials

147

4.5 One-Dimensional Elements Using Classical Interpolation Polynomials

151

4.6 Two-Dimensional (Rectangular) Elements Using Classical Interpolation Polynomials

152

4.7 Continuity Conditions

154

4.8 Comparative Study of Elements

156

4.9 Isoparametric Elements

157

4.10 Numerical Integration

165

References

168

Problems

169

Chapter 5. Derivation of Element Matrices and Vectors

174

5.1 Introduction

175

5.2 Variational Approach

175

5.3 Solution of Equilibrium Problems Using Variational (Rayleigh-Ritz) Method

180

5.4 Solution of Eigenvalue Problems Using Variational (Rayleigh-Ritz) Method

184

5.5 Solution of Propagation Problems Using Variational (Rayleigh-Ritz) Method

185

5.6 Equivalence of Finite Element and Variational (Rayleigh-Ritz) Methods

186

5.7 Derivation of Finite Element Equations Using Variational (Rayleigh-Ritz) Approach

186

5.8 Weighted Residual Approach

192

5.9 Solution of Eigenvalue Problems Using Weighted Residual Method

199

5.10 Solution of Propagation Problems Using Weighted Residual Method

200

5.11 Derivation of Finite Element Equations Using Weighted Residual (Galerkin) Approach

201

5.12 Derivation of Finite Element Equations Using Weighted Residual (Least Squares) Approach

204

5.13 Strong and Weak Form Formulations

206

References

208

Problems

209

Chapter 6. Assembly of Element Matrices and Vectors and Derivation of System Equations

216

6.1 Coordinate Transformation

216

6.2 Assemblage of Element Equations

221

6.3 Incorporation of Boundary Conditions

228

6.4 Penalty Method

236

6.5 Multipoint Constraints—Penalty Method

240

6.6 Symmetry Conditions—Penalty Method

243

6.7 Rigid Elements

245

References

249

Problems

249

Chapter 7. Numerical Solution of Finite Element Equations

258

7.1 Introduction

258

7.2 Solution of Equilibrium Problems

259

7.3 Solution of Eigenvalue Problems

268

7.4 Solution of Propagation Problems

279

7.5 Parallel Processing in Finite Element Analysis

285

References

286

Problems

287

Part 3: Application to Solid Mechanics Problems

292

Chapter 8. Basic Equations and Solution Procedure

294

8.1 Introduction

294

8.2 Basic Equations of Solid Mechanics

294

8.3 Formulations of Solid and Structural Mechanics

311

8.4 Formulation of Finite Element Equations (Static Analysis)

316

8.5 Nature of Finite Element Solutions

320

References

321

Problems

321

Chapter 9. Analysis of Trusses, Beams, and Frames

328

9.1 Introduction

328

9.2 Space Truss Element

329

9.3 Beam Element

340

9.4 Space Frame Element

345

9.5 Characteristics of Stiffness Matrices

355

References

356

Problems

357

Chapter 10. Analysis of Plates

372

10.1 Introduction

372

10.2 Triangular Membrane Element

373

10.3 Numerical Results with Membrane Element

384

10.4 Quadratic Triangle Element

386

10.5 Rectangular Plate Element (In-plane Forces)

389

10.6 Bending Behavior of Plates

393

10.7 Finite Element Analysis of Plates in Bending

396

10.8 Triangular Plate Bending Element

396

10.9 Numerical Results with Bending Elements

400

10.10 Analysis of Three-Dimensional Structures Using Plate Elements

403

References

406

Problems

406

Chapter 11. Analysis of Three-Dimensional Problems

418

11.1 Introduction

418

11.2 Tetrahedron Element

418

11.3 Hexahedron Element

426

11.4 Analysis of Solids of Revolution

430

References

438

Problems

439

Chapter 12. Dynamic Analysis

444

12.1 Dynamic Equations of Motion

444

12.2 Consistent and Lumped Mass Matrices

447

12.3 Consistent Mass Matrices in a Global Coordinate System

456

12.4 Free Vibration Analysis

457

12.5 Dynamic Response Using Finite Element Method

469

12.6 Nonconservative Stability and Flutter Problems

477

12.7 Substructures Method

478

References

479

Problems

479

Part 4: Application to Heat Transfer Problems

488

Chapter 13. Formulation and Solution Procedure

490

13.1 Introduction

490

13.2 Basic Equations of Heat Transfer

490

13.3 Governing Equation for Three-Dimensional Bodies

492

13.4 Statement of the Problem

496

13.5 Derivation of Finite Element Equations

497

References

501

Problems

501

Chapter 14. One-Dimensional Problems

506

14.1 Introduction

506

14.2 Straight Uniform Fin Analysis

506

14.3 Convection Loss from End Surface of Fin

509

14.3 Tapered Fin Analysis

513

14.4 Analysis of Uniform Fins Using Quadratic Elements

516

14.5 Unsteady State Problems

519

14.6 Heat Transfer Problems with Radiation

524

References

528

Problems

528

Chapter 15. Two-Dimensional Problems

534

15.1 Introduction

534

15.2 Solution

534

15.3 Unsteady State Problems

543

References

543

Problems

543

Chapter 16. Three-Dimensional Problems

548

16.1 Introduction

548

16.2 Axisymmetric Problems

548

16.3 Three-Dimensional Heat Transfer Problems

553

16.4 Unsteady State Problems

558

References

559

Problems

559

Part 5: Application to Fluid Mechanics Problems

564

Chapter 17. Basic Equations of Fluid Mechanics

566

17.1 Introduction

566

17.2 Basic Characteristics of Fluids

566

17.3 Methods of Describing the Motion of a Fluid

567

17.4 Continuity Equation

568

17.5 Equations of Motion or Momentum Equations

569

17.6 Energy, State, and Viscosity Equations

573

17.7 Solution Procedure

574

17.8 Inviscid Fluid Flow

576

17.9 Irrotational Flow

577

17.10 Velocity Potential

578

17.11 Stream Function

579

17.12 Bernoulli Equation

581

References

583

Problems

583

Chapter 18. Inviscid and Incompressible Flows

588

18.1 Introduction

588

18.2 Potential Function Formulation

590

18.3 Finite Element Solution Using the Galerkin Approach

590

18.4 Stream Function Formulation

601

References

603

Problems

603

Chapter 19. Viscous and Non-Newtonian Flows

608

19.1 Introduction

608

19.2 Stream Function Formulation (Using Variational Approach)

609

19.3 Velocity–Pressure Formulation (Using Galerkin Approach)

613

19.4 Solution of Navier–Stokes Equations

615

19.5 Stream Function–Vorticity Formulation

617

19.6 Flow of Non-Newtonian Fluids

619

19.7 Other Developments

624

References

625

Problems

625

Part 6: Solution and Applications of Quasi-Harmonic Equations

628

Chapter 20. Solution of Quasi-Harmonic Equations

630

20.1 Introduction

630

20.2 Finite Element Equations for Steady-State Problems

632

20.3 Solution of Poisson’s Equation

632

20.4 Transient Field Problems

639

References

641

Problems

641

Part 7: ABAQUS and ANSYS Software and MATLAB® Programs for Finite Element Analysis

646

Chapter 21. Finite Element Analysis Using ABAQUS

648

21.1 Introduction

648

21.2 Examples

649

Problems

679

Chapter 22. Finite Element Analysis Using ANSYS

680

22.1 Introduction

680

22.2 GUI Layout in ANSYS

681

22.3 Terminology

681

22.4 Finite Element Discretization

682

22.5 System of Units

684

22.6 Stages in Solution

684

Problems

698

Chapter 23. MATLAB Programs for Finite Element Analysis

700

23.1 Solution of Linear System of Equations Using Choleski Method

701

23.2 Incorporation of Boundary Conditions

703

23.3 Analysis of Space Trusses

704

23.4 Analysis of Plates Subjected to In-plane Loads Using CST Elements

708

23.5 Analysis of Three-Dimensional Structures Using CST Elements

711

23.6 Temperature Distribution in One-Dimensional Fins

714

23.7 Temperature Distribution in One-Dimensional Fins Including Radiation Heat Transfer

715

23.8 Two-Dimensional Heat Transfer Analysis

716

23.9 Confined Fluid Flow around a Cylinder Using Potential Function Approach

718

23.10 Torsion Analysis of Shafts

719

Problems

720

Appendix: Green-Gauss Theorem (Integration by Parts in Two and Three Dimensions)

722

Index

724