Search and Find

Book Title

Author/Publisher

Table of Contents

Show eBooks for my device only:

 

Computational Techniques for Multiphase Flows

Computational Techniques for Multiphase Flows

of: Guan Heng Yeoh, Jiyuan Tu

Elsevier Trade Monographs, 2009

ISBN: 9780080914893 , 664 Pages

Format: PDF, ePUB, Read online

Copy protection: DRM

Windows PC,Mac OSX geeignet für alle DRM-fähigen eReader Apple iPad, Android Tablet PC's Apple iPod touch, iPhone und Android Smartphones Read Online for: Windows PC,Mac OSX,Linux

Price: 110,00 EUR



More of the content

Computational Techniques for Multiphase Flows


 

Front Cover

1

Computational Techniques For Multi-Phase Flows

4

Copyright Page

5

Contents

6

Preface

12

Chapter 1. Introduction

16

1.1 CLASSIFICATION AND PHENOMENOLOGICAL DISCUSSION

16

1.2 TYPICAL PRACTICAL PROBLEMS INVOLVING MULTI-PHASE FLOWS

18

1.3 COMPUTATIONAL FLUID DYNAMICS AS A RESEARCH TOOL FOR MULTI-PHASE FLOWS

20

1.4 COMPUTATIONAL FLUID DYNAMICS AS A DESIGN TOOL FOR MULTI-PHASE FLOWS

26

1.5 IMPACT OF MULTI-PHASE FLOW STUDY ON COMPUTATIONAL FLUID DYNAMICS

31

1.6 SCOPE OF THE BOOK

34

Chapter 2. Governing Equations and Boundary Conditions

36

2.1 BACKGROUND OF DIFFERENT APPROACHES

36

2.2 AVERAGING PROCEDURE FOR MULTI-PHASE FLOW

37

2.3 EQUATIONS OF MOTION FOR CONTINUOUS PHASE

41

2.3.1 Conservation of Mass

41

2.3.2 Conservation of Momentum

45

2.3.3 Conservation of Energy

49

2.3.4 Interfacial Transport

55

2.3.5 Effective Conservation Equations

57

2.4 COMMENTS AND OBSERVATIONS ON THE GOVERNING EQUATIONS FOR THE TWO-FLUID MODELLING APPROACH

61

2.5 EQUATIONS OF MOTION FOR DISPERSE PHASE

68

2.6 TURBULENCE IN TRANSPORT PHENOMENA

71

2.6.1 Reynolds-Averaged Equations

71

2.6.2 Reynolds-Averaged Closure

75

2.6.3 Some Comments on the k–ε Model and Implications of Other Turbulence Models

77

2.6.3.1 Shear Stress Transport (SST) Model

78

2.6.3.2 Reynolds Stress Model

81

2.6.3.3 Near-Wall Treatment

86

2.6.4 Some Comments on Turbulence Modelling of the Disperse Phase

90

2.7 DIFFERENTIAL AND INTEGRAL FORM OF THE TRANSPORT EQUATIONS

91

2.7.1 A Comment on Multi-Fluid Model

99

2.8 BOUNDARY CONDITIONS AND THEIR PHYSICAL INTERPRETATION

100

2.8.1 Comments on Some Wall Boundary Conditions for Multi-Phase Problems

107

2.9 SUMMARY

109

Chapter 3. Solution Methods for Multi-Phase Flows

110

3.1 INTRODUCTION

110

3.2 MESH SYSTEMS: CONSIDERATION FOR A RANGE OF MULTI-PHASE FLOW PROBLEMS

113

3.2.1 Application of Structured Mesh

114

3.2.2 Application of Body-Fitted Mesh

115

3.2.3 Application of Unstructured Mesh

121

3.2.4 Some Comments on Grid Generation

124

3.3 EULERIAN–EULERIAN FRAMEWORK: NUMERICAL ALGORITHMS

128

3.3.1 Basic Aspects of Discretization – Finite Difference Method

129

3.3.2 Basic Aspects of Discretization – Finite-Volume Method

132

3.3.3 Basic Approximation of the Diffusion Term Based upon the Finite-Volume Method

141

3.3.4 Basic Approximation of the Advection Term Based upon the Finite-Volume Method

147

3.3.5 Some Comments on the Need for TVD Schemes

154

3.3.6 Explicit and Implicit Approaches

157

3.3.7 Assembly of Discretized Equations

162

3.3.8 Comments on the Linearization of Source Terms

165

3.4 SOLUTION ALGORITHMS

170

3.4.1 The Philosophy Behind the Pressure-Correction Techniques for Multi-Phase Problems

171

3.4.1.1 SIMPLE Algorithm for Mixture or Homogeneous Flows

171

3.4.1.2 A Comment on Other Pressure-Correction Methods

176

3.4.1.3 Evaluation of the Face Velocity in Different Mesh Systems

177

3.4.1.4 Iterative Procedure Based on the SIMPLE Algorithm

182

3.4.1.5 IPSA for Multi-Phase Flows

183

3.4.1.6 IPSA-C for Multi-Phase Flows

187

3.4.1.7 Comments on the Need for Improved Interpolation Methods of Evaluating the Face Velocity in Multi-Phase Problems

191

3.4.2 Matrix Solvers for the Segregated Approach in Different Mesh Systems

195

3.4.3 Coupled Equation System

205

3.5 EULERIAN–LAGRANGIAN FRAMEWORK: NUMERICAL AND SOLUTION ALGORITHMS

207

3.5.1 Basic Numerical Techniques

208

3.5.2 Comments on Sampling Particulates for Turbulent Dispersion

211

3.5.3 Some Comments on Attaining Proper Statistical Realizations

219

3.5.4 Evaluation of Source Terms for the Continuous Phase

220

3.6 INTERFACE-TRACKING/CAPTURING ALGORITHMS: BASIC CONSIDERATIONS OF INTERFACE-TRACKING/CAPTURING METHODS

223

3.6.1 Algorithms Based on Surface Methods: with Comments

225

3.6.1.1 Markers on Interface (Surface Marker Techniques)

225

3.6.1.2 Surface-Fitted Method

228

3.6.2 Algorithms Based on Volume Methods: with Comments

229

3.6.2.1 Markers in Fluid (MAC Formulation)

229

3.6.2.2 Volume of Fluid (VOF)

230

3.6.2.3 Level Set Method

247

3.6.2.4 Hybrid Methods

251

3.6.3 Computing Surface Tension and Wall Adhesion

252

3.7 SUMMARY

256

Chapter 4. Gas–Particle Flows

258

4.1 INTRODUCTION

258

4.1.1 Background

258

4.1.2 Classification of Gas–Particle Flows

259

4.1.3 Particle Loading and Stokes Number

260

4.1.4 Particle Dispersion Due to Turbulence

262

4.2 MULTI-PHASE MODELS FOR GAS–PARTICLE FLOWS

264

4.2.1 Eulerian–Lagrangian Framework

264

4.2.2 Eulerian–Eulerian Framework

270

4.2.3 Turbulence Modelling

272

4.2.3.1 Gas Phase

273

4.2.3.2 Particle Phase in Lagrangian Reference Frame

276

4.2.3.3 Particle Phase in Eulerian Reference Frame

278

4.2.4 Particle–Wall Collision Model

283

4.2.4.1 Lagrangian Reference Frame

284

4.2.4.2 Eulerian Reference Frame

288

4.3 WORKED EXAMPLES

293

4.3.1 Dilute Gas–Particle Flow over a Two-Dimensional Backwards Facing Step

293

4.3.1.1 Numerical Features

293

4.3.1.2 Numerical Results

296

4.3.1.3 Conclusion

303

4.3.2 Dilute Gas–Particle Flow in a Three-Dimensional 90° Bend

305

4.3.2.1 Numerical Features

306

4.3.2.2 Numerical Results

308

4.3.2.3 Conclusion

313

4.3.3 Dilute Gas–Particle Flow Over an In-Line Tube Bank

314

4.3.3.1 Numerical Features

315

4.3.3.2 Numerical Results

320

4.3.3.3 Conclusion

325

4.4 SUMMARY

325

Chapter 5. Liquid–Particle Flows

328

5.1 INTRODUCTION

328

5.1.1 Background

328

5.1.2 Some Physical Characteristics of Flow in Sedimentation Tank

329

5.1.3 Some Physical Characteristics of Slurry Transport

332

5.2 MULTI-PHASE MODELS FOR LIQUID–PARTICLE FLOWS

333

5.2.1 Mixture Model

334

5.2.1.1 Modelling Source or Sink Terms for Flow in Sedimentation Tank

336

5.2.1.2 Modelling Source or Sink Terms for Flow in Slurry Transportation

341

5.2.2 Turbulence Modelling

344

5.3 WORKED EXAMPLES

347

5.3.1 Liquid–Particle Flows in Sedimentation Tank

347

5.3.1.1 Numerical Features

347

5.3.1.2 Numerical Results

349

5.3.1.3 Conclusion

354

5.3.2 Sand–Water Slurry Flow in a Horizontal Straight Pipe

355

5.3.2.1 Numerical Features

356

5.3.2.2 Numerical Results

359

5.3.2.3 Conclusion

362

5.4 SUMMARY

364

Chapter 6. Gas–Liquid Flows

366

6.1 INTRODUCTION

366

6.1.1 Background

366

6.1.2 Categorization of Different Flow Regimes

368

6.1.3 Some Physical Characteristics of Boiling Flow

370

6.2 MULTI-PHASE MODELS FOR GAS–LIQUID FLOWS

372

6.2.1 Multi-Fluid Model

373

6.2.1.1 Inter-Phase Mass Transfer

375

6.2.1.2 Inter-Phase Momentum Transfer

376

6.2.1.3 Inter-Phase Heat Transfer

381

6.2.2 Turbulence Modelling

382

6.3 POPULATION BALANCE APPROACH

385

6.3.1 Need for Population Balance in Gas–Liquid Flows

385

6.3.2 Population Balance Equation (PBE)

388

6.3.3 Method of Moments (MOM)

389

6.3.3.1 Quadrature Method of Moments (QMOM)

390

6.3.3.2 Direct Quadrature Method of Moments (DQMOM)

391

6.3.4 Class Methods (CM)

394

6.3.4.1 Average Quantities Approach

395

6.3.4.2 Multiple Size Group Model

396

6.4 BUBBLE INTERACTION MECHANISMS

398

6.4.1 Single Average Scalar Approach for Bubbly Flows

398

6.4.1.1 Wu et al. (1998) Model

399

6.4.1.2 Hibiki and Ishii (2002) Model

400

6.4.1.3 Yao and Morel (2004) Model

401

6.4.2 Multiple Bubble Size Approach for Bubbly Flows

402

6.4.2.1 DQMOM Model

404

6.4.2.2 MUSIG Model

405

6.4.3 Comments of Other Coalescence and Break-Up Kernels

407

6.4.4 Modelling Beyond Bubbly Flows – A Phenomenological Consideration

409

6.5 MODELLING SUB-COOLED BOILING FLOWS

413

6.5.1 Review of Current Model Applications

413

6.5.2 Phenomenological Description

418

6.5.3 Nucleation of Bubbles at Heated Walls

421

6.5.4 Condensation of Bubbles in Sub-Cooled Liquid

428

6.6 WORKED EXAMPLES

429

6.6.1 Dispersed Bubbly Flow in a Rectangular Column

429

6.6.1.1 Numerical Features

430

6.6.1.2 Numerical Results

434

6.6.1.3 Conclusion

438

6.6.2 Bubbly Flow in a Vertical Pipe

438

6.6.2.1 Numerical Features

439

6.6.2.2 Numerical Results

442

6.6.2.3 Conclusion

450

6.6.3 Sub-Cooled Boiling Flow in a Vertical Annulus

451

6.6.3.1 Application of MUSIG Boiling Model

452

6.6.3.2 Application of Improved Wall Heat Partition Model

463

6.7 SUMMARY

470

Chapter 7. Free Surface Flows

472

7.1 INTRODUCTION

472

7.2 MULTI-PHASE MODELS FOR FREE SURFACE FLOWS

473

7.3 RELEVANT WORKED EXAMPLES

477

7.3.1 Bubble Rising in a Viscous Liquid

477

7.3.1.1 Numerical Features

478

7.3.1.2 Numerical Results

481

7.3.1.3 Conclusion

486

7.3.2 Single Taylor Bubble

487

7.3.2.1 Numerical Features

490

7.3.2.2 Numerical Results

493

7.3.2.3 Conclusion

496

7.3.3 Collapse of a Liquid Column (Breaking Dam Problem)

496

7.3.3.1 Numerical Features

500

7.3.3.2 Numerical Results

501

7.3.3.3 Conclusion

505

7.3.4 Sloshing of Liquid

506

7.3.4.1 Numerical Features

508

7.3.4.2 Numerical Results

509

7.3.4.3 Similar Comparison for the Roll Motion Cases

512

7.3.4.4 Conclusion

514

7.4 SUMMARY

514

Chapter 8. Freezing/Solidification

516

8.1 INTRODUCTION

516

8.2 MATHEMATICAL FORMULATION

517

8.2.1 Governing Equations

517

8.2.2 Solid–Liquid Interface

521

8.2.3 Other Boundary Conditions

523

8.3 NUMERICAL PROCEDURE

524

8.3.1 Internal Grid Generation

524

8.3.2 Surface Grid Generation

524

8.3.3 Optimizing Computational Meshes

528

8.3.3.1 Objective Function

528

8.3.3.2 Optimization Algorithm

530

8.3.4 Transformation of Governing Equations and Boundary Conditions

532

8.4 WORKED EXAMPLES

537

8.4.1 Freezing of Water on a Vertical Wall in an Enclosed Cubical Cavity

537

8.4.1.1 Numerical Features

537

8.4.1.2 Numerical Results

539

8.4.1.3 Conclusion

542

8.4.2 Freezing of Water in an Open Cubical Cavity

545

8.4.2.1 Numerical Features

546

8.4.2.2 Numerical Results

548

8.4.2.3 Conclusion

553

8.5 SUMMARY

553

Chapter 9. Three-Phase Flows

556

9.1 INTRODUCTION

556

9.2 DESCRIPTION OF PROBLEM IN THE CONTEXT OF COMPUTATIONAL FLUID DYNAMICS

557

9.3 MODELLING APPROACHES FOR GAS–LIQUID–SOLID FLOWS

559

9.3.1 Three-Fluid Model

559

9.3.2 Turbulence Modelling

566

9.4 EVALUATION OF MULTI-PHASE MODELS FOR GAS–LIQUID–SOLID FLOWS

567

9.4.1 Three-Phase Modelling of the Air-Lift Pump

568

9.4.1.1 Numerical Features

569

9.4.1.2 Numerical Results

570

9.4.1.3 Conclusion

574

9.4.2 Modelling of Three-Phase Mechanically Agitated Reactor

574

9.4.2.1 Numerical Features

575

9.4.2.2 Numerical Results

577

9.4.2.3 Conclusion

580

9.5 SUMMARY

580

Chapter 10. Future Trends in Handling Turbulent Multi-Phase Flows

582

10.1 INTRODUCTION

582

10.2 DIRECT NUMERICAL SIMULATION OF MULTI-PHASE FLOWS

585

10.2.1 Model Description

585

10.3 LARGE EDDY SIMULATION OF MULTI-PHASE FLOWS

589

10.3.1 Model Description

589

10.3.1.1 Basic SGS Model

593

10.3.1.2 Dynamics SGS Model

594

10.4 ON MODELLING GAS–LIQUID–SOLID FLUIDIZATION

598

10.4.1 Governing Equations

599

10.4.2 Interface Tracking/Capturing Methods: with Comments

600

10.4.3 Discrete Particle Model

601

10.4.4 Particle–Particle Collision

605

10.4.5 Inter-Phase Couplings

608

10.4.6 Simulation Results

610

10.5 SOME CONCLUDING REMARKS

616

Appendix A. Full Derivation of Conservation Equations

618

References

622

Index

642

A

642

B

642

C

644

D

645

E

646

F

647

G

648

H

650

I

650

J

651

K

651

L

651

M

651

N

652

O

653

P

653

Q

654

R

654

S

654

T

656

U

657

V

657

W

658

Y

658