Search and Find

Book Title

Author/Publisher

Table of Contents

Show eBooks for my device only:

 

Superlattice to Nanoelectronics

Superlattice to Nanoelectronics

of: Raphael Tsu

Elsevier Trade Monographs, 2005

ISBN: 9780080455686

Format: PDF

Copy protection: DRM

Windows PC,Mac OSX Apple iPad, Android Tablet PC's

Price: 149,00 EUR



More of the content

Superlattice to Nanoelectronics


 

Cover

1

Frontmatter

2

Half Title Page

2

Copyright

3

Title Page

4

Copyright

5

Preface

6

Introduction

10

Contents

16

1. Superlattice

21

1.1. THE BIRTH OF THE MAN-MADE SUPERLATTICE

21

1.2. A MODEL FOR THE CREATION OF MAN-MADE ENERGY BANDS

24

1.3. TRANSPORT PROPERTIES OF A SUPERLATTICE

26

1.4. MORE RIGOROUS DERIVATION OF THE NEGATIVE DIFFERENTIAL CONDUCTANCE

26

1.5. RESPONSE OF A TIME-DEPENDENT ELECTRIC FIELD

30

1.6. NDC FROM THE HOPPING MODEL AND ELECTRIC FIELD INDUCED LOCALIZATION

35

1.7. EXPERIMENTS

47

1.8. TYPE II SUPERLATTICE

53

1.9. PHYSICAL REALIZATION AND CHARACTERIZATION OF A SUPERLATTICE

64

1.10. SUMMARY

73

REFERENCES

74

2. Resonant Tunneling Via Man-Made Quantum Well States

77

2.1. THE BIRTH OF RESONANT TUNNELING

77

2.2. SOME FUNDAMENTALS

81

2.3. CONDUCTANCE FROM THE TSU–ESAKI FORMULA

86

2.4. TUNNELING TIME FROM THE TIME-DEPENDENT SCHRÖDINGER EQUATION

87

2.5. DAMPING IN RESONANT TUNNELING

97

2.6. VERY SHORT l AND w FOR AN AMORPHOUS QUANTUM WELL

117

2.7. SELF-CONSISTENT POTENTIAL CORRECTION OF DBRT

120

2.8. EXPERIMENTAL CONFIRMATION OF RESONANT TUNNELING

123

2.9. INSTABILITY IN RTD

126

2.10. SUMMARY

132

REFERENCES

134

3. Optical Properties and Raman Scattering in Man-Made Quantum Systems

137

3.1. OPTICAL ABSORPTION IN A SUPERLATTICE

137

3.2. PHOTOCONDUCTIVITY IN A SUPERLATTICE

143

3.3. RAMAN SCATTERING IN A SUPERLATTICE AND QUANTUM WELL

146

3.4. SUMMARY

162

REFERENCES

163

4. Dielectric Function and Doping of a Superlattice

165

4.1. DIELECTRIC FUNCTION OF A SUPERLATTICE AND A QUANTUM WELL

165

4.2. DOPING A SUPERLATTICE

169

4.3. SUMMARY

173

REFERENCES

173

5. Quantum Step and Activation Energy

175

5.1. OPTICAL PROPERTIES OF QUANTUM STEPS

175

5.2. DETERMINATION OF ACTIVATION ENERGY IN QUANTUM WELLS

180

5.3. SUMMARY

185

REFERENCES

185

6. Semiconductor Atomic Superlattice (SAS)

187

6.1. SILICON-BASED QUANTUM WELLS

188

6.2. Si–INTERFACE ADSORBED GAS (IAG) SUPERLATTICE

189

6.3. AMORPHOUS SILICON/SILICON OXIDE SUPERLATTICE

191

6.4. SILICON–OXYGEN (Si–O) SUPERLATTICE

193

6.5. ESTIMATE OF THE BAND-EDGE ALIGNMENT USING ATOMIC STATES

198

6.6. ESTIMATE OF THE BAND-EDGE ALIGNMENT WITH HOMO–LUMO

199

6.7. ESTIMATION OF STRAIN FROM A BALL AND STICK MODEL

200

6.8. ELECTROLUMINESCENCE AND PHOTOLUMINESCENCE

214

6.9. TRANSPORT THROUGH A Si–O SUPERLATTICE

218

6.10. COMPARISON OF A Si–O SUPERLATTICE AND A Ge–Si MONOLAYER SUPERLATTICE

221

6.11. SUMMARY

223

REFERENCES

224

7. Si Quantum Dots

227

7.1. ENERGY STATES OF SILICON QUANTUM DOTS

227

7.2. RESONANT TUNNELING IN SILICON QUANTUM DOTS

233

7.3. SLOW OSCILLATIONS AND HYSTERESIS

240

7.4. AVALANCHE MULTIPLICATION FROM RESONANT TUNNELING

248

7.5. INFLUENCE OF LIGHT AND REPEATABILITY UNDER MULTIPLE SCANS

252

7.6. SUMMARY

254

REFERENCES

256

8. Capacitance, Dielectric Constant and Doping Quantum Dots

259

8.1. CAPACITANCE OF SILICON QUANTUM DOTS

259

8.2. DIELECTRIC CONSTANT OF A SILICON QUANTUM DOT

268

8.3. DOPING A SILICON QUANTUM DOT

277

8.4. SUMMARY

283

REFERENCES

284

9. Porous Silicon

287

9.1. POROUS SILICON – LIGHT EMITTING SILICON

287

9.2. POROUS SILICON – OTHER APPLICATIONS

292

9.3. SUMMARY

295

REFERENCES

295

10. Some Novel Devices

297

10.1. COLD CATHODE

297

10.2. SATURATION INTENSITY OF PbS QUANTUM DOTS

301

10.3. MULTIPOLE ELECTRODE HETEROJUNCTION HYBRID STRUCTURES

305

10.4. SOME FUNDAMENTAL ISSUES: MAINLY DIFFICULTIES

309

10.5. COMMENTS ON QUANTUM COMPUTING

311

10.6. SUMMARY

312

REFERENCES

313

11. Quantum Impedance of Electrons

315

11.1. LANDAUER CONDUCTANCE FORMULA

315

11.2. ELECTRON QUANTUM WAVEGUIDE (EQW)

316

11.3. WAVE IMPEDANCE OF ELECTRONS

320

11.4. SUMMARY

328

REFERENCES

329

12. Nanoelectronics: Where Are You?

331

REFERENCES

334

Index

335