Search and Find

Book Title

Author/Publisher

Table of Contents

Show eBooks for my device only:

 

Applications of Polyhedral Oligomeric Silsesquioxanes

Applications of Polyhedral Oligomeric Silsesquioxanes

of: Claire Hartmann-Thompson

Springer-Verlag, 2011

ISBN: 9789048137879 , 420 Pages

Format: PDF

Copy protection: DRM

Windows PC,Mac OSX,Windows PC,Mac OSX geeignet für alle DRM-fähigen eReader Apple iPad, Android Tablet PC's

Price: 149,79 EUR



More of the content

Applications of Polyhedral Oligomeric Silsesquioxanes


 

Foreword: The Re-Birth of PolyhedralOligosilsesquioxane Chemistry

5

Preface

11

Biographical Note

14

Contents

15

Contributors

23

Chapter 1 Polyhedral Oligomeric Silsesquioxanes: From Early and Strategic Development through to Materials Application

26

1.1 Introduction

26

1.2 Early Synthesis of Polyhedral Oligosilsesquioxanes (POS)

29

1.3 Hydrolysis and Condensation in Making Oligosilsesquioxanes

30

1.4 Synthesis of Hydridooctasilsesquioxane, H8Si8O12 (T8H8) and Octakis-(Hydridodimethylsiloxy)Octasilsesquioxane, [H(CH3)2SiO]8Si8O12 (Q8M8H8)

33

1.5 Hydrosilylation

35

1.6 Octa-Functionalized POS Macromonomers

36

1.6.1 Macromonomers Derived by the Hydrosilylation of Octahydridosilsesquioxane (H8Si8O12

T8 H )36

1.6.2 Macromonomers Derived by the Hydrosilylation of Octa(Hydridodimethylsiloxy)Octasilsesquioxane[(HSiMe2O)8Si8O12

(Q8M8H8)]38

1.7 Organic-Inorganic Hybrid Materials Prepared from POS: Octasilsesquioxanecontaining Polymers

40

1.7.1 Hybrid Organic-Inorganic Crosslinked Materials Containing POS

40

1.7.2 Star-Shaped Hybrid Organic-Inorganic Materials Containing POS as a Macroinitiator

43

1.8 Mono-Substituted Polyhedral Oligomeric Silsesquioxane Macromonomers

45

1.8.1 Synthesis of Mono-Substituted Silsesquioxanes by Hydrolysis of Trifunctional Silanes

46

1.8.2 Synthesis of Mono-Substituted Silsesquioxanes by Hydrosilylation

47

1.8.3 Synthesis of Mono-Substituted Silsesquioxanes by Corner-Capping Reactions

49

1.9 Chemistry of Incompletely Condensed Silsesquioxanes

50

1.9.1 Synthesis of Incompletely Condensed Silsesquioxanes

51

1.9.2 Chemistry of Incompletely Condensed Silsesquioxanes

56

1.9.3 Hybrid Organic-Inorganic Materials Derived from Mono-Substituted POS Monomers

57

1.10 Summary

61

1.11 References

62

Chapter 2 Preparation and Characterization of Polyhedral Oligosilsesquioxanes

72

2.1 General Comments

72

2.2 Synthesis of TnRn Compounds where R = H, Alkyl or Alkenyl

73

2.2.1 Hydrolysis

73

2.2.1.1 T4 and T6 Compounds

73

2.2.1.2 T8 Compounds

74

2.2.1.3 T10, T12 and Larger Compounds

76

2.2.2 Substitution

76

2.2.3 Cage Rearrangement

78

2.2.4 Modification of R

79

2.2.4.1 T8 Compounds

79

2.2.4.2 T10 and T12 Compounds

84

2.2.5 Other Synthetic Methods

84

2.2.5.1 T6 Compounds

84

2.2.5.2 T8 Compounds

85

2.2.5.3 T10 and T12 Compounds

85

2.3 Synthesis of TnRn Compounds where R = Aryl

86

2.3.1 Hydrolysis

86

2.3.1.1 T8 Compounds

86

2.3.1.2 T10 and T12 Compounds

87

2.3.2 Modification of R

87

2.3.2.1 T8 Compounds

87

2.3.2.2 T10 and T12 Compounds

90

2.3.3 Other Synthetic Methods

90

2.4 Synthesis of Tn Rn Compounds where R =Alkoxy

91

2.5 Synthesis of TnRn Compounds whereR = Siloxy

91

2.5.1 Corner Capping

91

2.5.2 Substitution

91

2.5.2.1 T8 Compounds

91

2.5.2.2 T10, T12, and T14 Compounds

92

2.5.3 Modification of R

92

2.5.3.1 T6 Compounds

92

2.5.3.2 T8 Compounds

92

2.5.3.3 T10 Compounds

95

2.6 Synthesis of TnRn Compounds where R = Metal Complex

95

2.6.1 Hydrolysis

95

2.6.2 Substitution

96

2.6.2.1 T8 Compounds

96

2.6.2.2 T10 Compounds

96

2.6.3 Modification of R

96

2.7 Synthesis of Miscellaneous TnRn Compounds

99

2.7.1 Hydrolysis

99

2.7.1.1 T6 Compounds

99

2.7.1.2 T8 Compounds

99

2.7.1.3 T10 Compounds

100

2.7.2 Co-Hydrolysis

100

2.7.3 Substitution and Modification of Functional Groups

101

2.7.4 Other Synthetic Methods

101

2.7.4.1 T4 Compounds

101

2.7.4.2 T8 Compounds

101

2.7.4.3 T10 Compounds

102

2.8 Synthesis of Endohedral T8R8 Compounds

102

2.9 Introduction to the Physical Properties of POS Compounds

103

2.10 NMR and EPR Spectroscopy of POS Compounds

103

2.10.1 Solution 29Si NMR Studies

103

2.10.2 Solid State NMR Studies

108

2.10.3 EPR Spectra

110

2.11 Vibrational Spectra of Polyhedral Oligomeric Silsesquioxane Compounds

110

2.12 Mass Spectra of POS Compounds

113

2.13 Electronic Spectra of POS Compounds

115

2.14 Structural Studies of POS Compounds

116

2.14.1 Single Crystal X-Ray Diffraction Studies

116

2.14.2 Structures Derived from Computational and Gas-Phase Electron Diffraction Studies

120

2.14.3 X-ray Diffraction Studies on Powders, Thin Films, etc.

121

2.14.3.1 T8R8 Compounds

122

2.14.3.2 T8R7R’ Compounds

123

2.15 TGA, DSC and Related Studies of POS Compounds

124

2.15.1 T8R8 Compounds (R = H, Alkyl, Vinyl, Aryl or Silyl Derivatives)

124

2.15.2 T8R8 Compounds (R = Siloxy Derivatives)

125

2.15.3 T8R7R’ Compounds

126

2.16 Microscopy Studies of T8 POS Compounds

127

2.16.1 T8R8 Compounds

127

2.16.2 T8R7R’ Compounds

127

2.17 X-Ray Photoelectron Spectra of POS Compounds

128

2.18 Electrochemistry of POS Compounds

128

2.19 Chromatographic Methods Applied to POS Compounds

129

2.20 Miscellaneous Physical Properties of POS Compounds

130

2.21 Acknowledgments

131

2.22 References

131

Chapter 3 Metallasilsesquioxanes: Molecular Analogues of Heterogeneous Catalysts

159

3.1 Introduction

159

3.2 Metallasilsesquioxanes

160

3.2.1 Group 4 – Ti, Zr, Hf

160

3.2.2 Group 5 – V

169

3.2.3 Group 6 – Mo

171

3.2.4 Group 8 – Fe

172

3.2.5 Group 12 – Zn

173

3.2.6 Group 13 – Al

174

3.2.7 Group 14 – Si

175

3.2.8 Lanthanides – Nd

177

3.2.9 Hetero-bimetallic Systems

178

3.3 Phosphasilsesquioxanes as Ligands

180

3.4 Catalytic Materials Derived From Metalla-Silsesquioxanes

183

3.5 Conclusions and Future Prospects

186

3.6 References

187

Chapter 4 Polymers and Copolymers Containing Covalently Bonded Polyhedral Oligomeric Silsesquioxanes Moieties

191

4.1 Introduction

191

4.2 Synthetic Strategies

192

4.2.1 Free Radical Polymerization

192

4.2.2 Living Radical Polymerization (ATRP, RAFT and NMP)

193

4.2.3 Anionic Polymerization

196

4.2.4 Ring-Opening Metathesis Polymerization (ROMP)

196

4.2.5 Metallocene-Catalyzed Polymerization

198

4.2.6 Step-Growth Polymerization

199

4.2.7 Grafting

204

4.3 POS Pendant-Random Copolymers

206

4.3.1 Glass Transition Temperature

206

4.3.2 Mechanical Properties

207

4.3.3 Crystallinity in POS Pendant-Random Copolymers

207

4.4 POS Pendant-Block Copolymers

210

4.4.1 Diblocks

210

4.4.2 Triblocks

212

4.4.3 Hemitelechelic (‘Tadpole’-Shaped) Polymers

213

4.4.4 Telechelic (Dumbbell-Shaped) Polymers

215

4.5 POS-Polyimide and POS-Urethanes

216

4.5.1 POS-Polyimide

216

4.5.2 POS-Urethane

217

4.6 Multifunctional POS in Network or Core Structures

219

4.6.1 Epoxy Networks

219

4.6.2 Other POS Networks

220

4.6.3 POS Star or Core Structures

222

4.7 Conclusion

223

4.8 References

224

Chapter 5 Polyhedral Oligomeric Silsesquioxanes in Plastics

232

5.1 Introduction

232

5.2 POS are Molecules

233

5.3 POS as Plastics Additives

236

5.4 POS Solubility

237

5.5 Effects of POS on Polymer Properties

237

5.5.1 POS Solubilized in the Polymer

238

5.5.2 POS Insoluble Present at Concentrations Above the Solubility Limit

239

5.5.3 POS Chemically Attached to the Polymer

240

5.5.4 POS Network Thermosets

241

5.6 POS Dispersants

242

5.7 POS Metal Deactivators

246

5.8 New Applications and the Future

247

5.9 Conclusions

248

5.10 References

248

Chapter 6 Fluorinated Polyhedral Oligosilsesquioxane Surfaces and Superhydrophobicity

252

6.1 Introduction

252

6.2 Experimental

254

6.2.1 Materials

254

6.2.2 Single Crystal X-Ray Structural Characterization

254

6.2.3 Fluorinated POS Coating and Composite Preparation

255

6.2.3.1 Spin Cast Fluorinated POS Coating

255

6.2.3.2 Fluorinated POS Solvent Blended Composites with 6F-BP PFCB Aryl Ether Polymer

255

6.2.3.3 Fluorinated POS Melt Blended PCTFE

255

6.2.4 Thermo-Mechanical Analysis

256

6.2.5 Microscopy

256

6.2.5.1 Atomic Force Microscopy (AFM)

256

6.2.5.2 Scanning Electron Microscopy (SEM)

256

6.2.6 Static and Dynamic Contact Angle

257

6.3 Results and Discussion

257

6.3.1 Fluorinated POS Synthesis

257

6.3.2 Fluorinated POS Properties

258

6.3.3 POS Fluoropolymers

261

6.3.3.1 Dispersion

261

6.3.3.2 Melt Processability

264

6.3.3.3 Thermo-Mechanical Analysis

265

6.3.3.4 Surface Properties

266

6.4 Conclusions

267

6.5 Acknowledgments

268

6.6 References

268

Chapter 7 Polyhedral Oligomeric Silsesquioxanes in Electronics and Energy Applications

270

Introduction

270

7.1 Polyhedral Oligomeric Silsesquioxanes in Liquid Crystal Systems

270

7.2 Polyhedral Oligomeric Silsesquioxanes in Electroluminescent (EL) Materials and Light Emitting Devices (LEDs)

284

7.2.1 Polyhedral Oligomeric Silsesquioxane End-capped EL Polymers

286

7.2.2 EL Polymers with Pendant Polyhedral Oligomeric Silsesquioxane Groups

287

7.2.3 EL Star Architectures with Polyhedral Oligomeric Silsesquioxane Cores

289

7.2.4 Polyhedral Oligomeric Silsesquioxane Iridium Complexes

293

7.2.5 Physical Blending of Polyhedral Oligomeric Silsesquioxanes into EL Polymers

296

7.3 Polyhedral Oligomeric Silsesquioxanes in Non-linear Optic (NLO), Optical Limiting (OL) and Laser Applications

297

7.4 Polyhedral Oligomeric Silsesquioxanes in Lithographic Applications

299

7.5 Polyhedral Oligomeric Silsesquioxanes in Sensor Systems

305

7.5.1 Fluorophore-Functionalized Polyhedral Oligomeric Silsesquioxanes as Sensors

306

7.5.2 Polyhedral Oligomeric Silsesquioxane Sensors for Gas and Vapor Detection

311

7.5.3 Polyhedral Oligomeric Silsesquioxanes in Conducting Composite and Electrochemical Sensors

315

7.6 Polyhedral Oligomeric Silsesquioxanes in Fuel Cell Applications

318

7.7 Polyhedral Oligomeric Silsesquioxanes in Battery Applications

327

7.8 Polyhedral Oligomeric Silsesquioxanes as Lubricants

331

7.9 References

332

Chapter 8 Polyhedral Oligomeric Silsesquioxanes in Space Applications

349

8.1 The Space Environment

349

8.2 Resistance of Siloxane Copolymers to Atomic Oxygen in Low Earth Orbit

352

8.3 Polyhedral Oligomeric Silsesquioxanes in Space Solar Power Systems

363

8.4 Summary

379

8.5 References

380

Chapter 9 Biomedical Application of Polyhedral Oligomeric Silsesquioxane Nanoparticles

384

9.1 Introduction

384

9.2 Nanocomposites

385

9.3 Polyhedral Oligomeric Silsesquioxanes

386

9.4 Biomedical Applications of Polyhedral Oligomeric Silsesquioxane-Containing Polymers

389

9.4.1 Drug Delivery

389

9.4.2 Dental Nanocomposites

392

9.4.3 Biosensors

394

9.4.4 Cardiovascular Implants

395

9.4.4.1 Mechanical Properties

397

9.4.4.2 Degradative Resistance

398

9.4.4.3 Biocompatibility and Biostability

399

9.4.4.4 Endothelialization Property

400

9.4.4.5 Anti-Thrombogenic Potential

403

9.4.4.6 Resistance to Calcifi cation and Fatigue

403

9.4.4.7 Reduced In Vitro Infl ammatory Response

404

9.4.5 Breast Implants

405

9.4.6 Coating Material for Quantum Dot Nanocrystals

406

9.4.7 Silver Nanoparticle-Containing Polyhedral Oligosilsesquioxane Polymers

408

9.4.8 Tissue Engineering

409

9.5 Other Applications

413

9.6 Future Prospects

413

9.7 References

414

Index

421

Abbreviations

434