Search and Find

Book Title

Author/Publisher

Table of Contents

Show eBooks for my device only:

 

Principles of Stellar Interferometry

of: Andreas Glindemann

Springer-Verlag, 2011

ISBN: 9783642150289 , 346 Pages

Format: PDF

Copy protection: DRM

Windows PC,Mac OSX,Windows PC,Mac OSX geeignet für alle DRM-fähigen eReader Apple iPad, Android Tablet PC's

Price: 106,99 EUR



More of the content

Principles of Stellar Interferometry


 

Principles of Stellar Interferometry

3

Preface

Preface

Contents

Contents

List of Symbols, Notations and Abbreviations

List of Symbols, Notations and Abbreviations

1 Introduction

18

Chapter 2 Propagation of Light

22

2.1 Preliminaries

23

2.1.1 Basic Properties of the Electromagnetic Wave

23

2.1.2 Young's Experiment

26

2.2 Scalar Diffraction Theory

30

2.2.1 The Rayleigh–Sommerfeld Diffraction Formula

30

2.2.2 Fresnel Approximation

33

2.2.3 The Airy Disk

36

2.3 The Coherence Function

42

2.3.1 Varieties of the Coherence Function

43

2.3.2 Generalised van Cittert–Zernike Theorem

49

2.3.3 Incoherent Sources of Light: Stars

51

2.3.4 Quasi-Monochromatic Approximation

54

2.4 Young's Experiment Revisited

61

2.4.1 The Coherence Function in Young's Experiment

62

2.4.2 ABCD Method

67

2.4.3 Power Spectrum of the Fringe Pattern

68

2.4.4 Heuristic Approach

73

2.5 Higher Order Correlation Functions: Intensity Interferometry

79

Chapter 3 Imaging Process: Propagation Through Optical Systems

90

3.1 Fourier Optics

91

3.1.1 The Optical Transfer Function

93

3.1.2 Optical Aberrations: The Zernike Polynomials

99

3.2 The Coherence Function

105

3.2.1 Image Intensity Distribution

105

3.2.2 Coherent Imaging

109

3.2.3 Coherence Properties in the Image Plane

116

3.3 Propagation Through Interferometers

120

3.3.1 Young's Experiment with a Lens

121

3.3.2 Apertures of Finite Size

127

3.3.3 Spectra of Finite Width

133

3.3.4 Objects of Finite Size

139

3.3.5 Considerations on the Interferometric Field of View

145

3.3.6 Masked Field of View

149

3.4 The uv-Plane

156

3.4.1 Large Apertures, Short Baseline: The LBT

158

3.4.2 Large Apertures, Long Baselines: The VLTI

161

3.4.3 Image Reconstruction: General Principles

166

Chapter 4 Atmospheric Turbulence

173

4.1 Kolmogorov Turbulence

174

4.1.1 First Principles

174

4.1.2 Index of Refraction Fluctuations

175

4.2 Statistical Properties of the Perturbed Complex Wave

180

4.2.1 Thin Layer Turbulence Model

180

4.2.2 Multiple Layers, the Fried Parameter

182

4.2.3 Anisoplanatic and Temporal Effects

188

4.3 Propagation Through Optical Systems

194

4.3.1 Fringe Motion

194

4.3.2 Image Motion

206

4.3.3 Zernike Representation of Atmospheric Turbulence

210

4.3.4 Scintillation

214

4.3.5 Speckle Pattern and Seeing Disk

216

4.4 Speckle Interferometry

224

Chapter 5 Instrumental Techniques

232

5.1 Combination of Two Telescopes

233

5.1.1 Fizeau Configuration

233

5.1.2 Michelson Configuration

237

5.1.3 Co-Axial Combination

241

5.2 Multi-Aperture Combination: Michelson Configuration

249

5.2.1 Multi-Axial and Co-Axial Combination

249

5.2.2 Aspects of Beam Combination

254

5.3 Multi-Aperture Combination: Direct Imaging

258

5.3.1 Fizeau Configuration

259

5.3.2 Hypertelescope

261

5.3.3 Interferometric Remapped Array Nulling: IRAN

264

5.3.4 Nulling Interferometer

272

5.4 Layout of Interferometer Arrays

278

5.4.1 Many Apertures

278

5.4.2 Few Apertures

283

5.4.3 Delay Lines

286

Chapter 6 Observing Through Atmospheric Turbulence

290

6.1 Visibility Measurement Through Atmospheric Turbulence

291

6.1.1 Power Spectrum of the Fringe Pattern

298

6.1.2 ABCD Method

302

6.2 Beating Atmospheric Turbulence

308

6.2.1 Fringe Tracking

308

6.2.2 Dual-Feed System

316

6.2.3 Closure Phase

321

6.3 Adaptive Optics

325

6.3.1 Wave Front Sensing

326

6.3.2 Closed Loop Operation

328

Chapter 7 Modern Interferometers

331

A Appendix

333

A.1 The Fourier Transform

333

A.2 Atmospheric Transmission Bands

336

References

338

Index

349