Search and Find

Book Title

Author/Publisher

Table of Contents

Show eBooks for my device only:

 

Controlling the Morphology of Polymers - Multiple Scales of Structure and Processing

of: Geoffrey R. Mitchell, Ana Tojeira

Springer-Verlag, 2016

ISBN: 9783319393223 , 341 Pages

Format: PDF, Read online

Copy protection: DRM

Windows PC,Mac OSX,Windows PC,Mac OSX geeignet für alle DRM-fähigen eReader Apple iPad, Android Tablet PC's Read Online for: Windows PC,Mac OSX,Linux

Price: 96,29 EUR



More of the content

Controlling the Morphology of Polymers - Multiple Scales of Structure and Processing


 

Preface

8

Contents

12

Chapter 1: Scales of Structure in Polymers

14

1.1 Introduction

14

1.2 Types of Bonds

14

1.3 Types of Polymers

15

1.4 Types of Materials

17

1.4.1 Thermoplastics

18

1.4.2 Thermosets

18

1.4.3 Composites, Micro-Fillers, Nano-Fillers

19

1.5 Types of Order

20

1.5.1 Crystalline

20

1.5.2 Liquid Crystalline

20

1.5.3 Amorphous

21

1.5.4 Blends and Mixtures

21

1.6 Structuring Processes

21

1.6.1 Crystallization

21

1.6.1.1 Lamellae to Spherulites

22

1.6.1.2 Crystal Growth Rates

23

1.6.1.3 Primary and Secondary Nucleation

24

1.6.1.4 Folding Theories

25

1.6.1.5 Computer Modelling Theories

26

1.6.1.6 The Bell Curve

26

1.6.1.7 Nucleation

27

1.6.1.8 Crystallization in Practice

27

1.6.1.9 Crystallization and Orientation

28

1.6.2 Microphase Separation and Block Copolymers (BCP)

28

1.6.2.1 Photonic Crystals

32

1.6.2.2 Micelles

32

1.6.3 Phase Separation Mixtures

33

1.6.4 Phase Separation on Reaction

35

1.7 Large-Scale Processes

36

1.8 Summary

37

References

37

Chapter 2: Evaluating Scales of Structures

42

2.1 Introduction

42

2.2 Indirect Methods

43

2.2.1 Differential Scanning Calorimetry

43

2.2.1.1 Reorganization and `Morphological Melting´

46

2.2.1.2 Thermal Fractionation

47

2.2.2 Dynamics

49

2.2.3 Spectroscopy

49

2.3 Imaging Methods

50

2.3.1 Light Microscopy

50

2.3.1.1 Polarized Optical Microscopy (POM)

52

2.3.1.2 Use of Tint Plates

53

2.3.1.3 Circularly Polarized Light

54

2.3.1.4 Phase Contrast Microscopy

55

2.3.1.5 Interference Microscopy (Nomarski)

56

2.3.1.6 Ancillary Techniques

58

2.3.2 Scanning Electron Microscopy

58

2.3.2.1 Contrast

59

2.3.2.2 Sandwiching and Embedding Techniques

60

2.3.3 Etching

61

2.3.4 Transmission Electron Microscopy

63

2.3.4.1 Inducing Contrast

63

2.3.5 Atomic Force Microscopy

66

2.4 Scattering Methods

66

2.4.1 X-Ray Scattering

67

2.4.1.1 Small Angle X-Ray Scattering

67

2.4.1.2 Wide Angle X-Ray Scattering

68

2.4.1.3 SAXS/WAXS Instruments

70

2.4.2 Neutron Scattering

71

2.4.2.1 Small Angle Neutron Scattering

72

2.4.2.2 Broad Q Neutron Diffraction

72

2.4.2.3 Neutron Scattering Instruments

74

2.5 Summary

76

References

76

Chapter 3: Crystallization in Nanocomposites

81

3.1 Introduction

81

3.2 Templating

82

3.2.1 Linear Nucleation

82

3.3 Crystallization and Flow

84

3.4 Nanoparticles

87

3.4.1 Introduction

87

3.4.2 Carbon Nanotubes

88

3.4.3 Nanoclay

93

3.5 Nanocomposites with Carbon Nanotubes

98

3.5.1 Nanocomposites with Halloysites

100

3.5.2 Nanocomposites with Clay Platelets

101

3.5.3 Nanocomposites with Graphene

104

3.5.4 Summary

106

References

107

Chapter 4: Theoretical Aspects of Polymer Crystallization

113

4.1 Introduction

113

4.2 Thermodynamics of Polymer Crystallization

114

4.2.1 Basic Concepts

114

4.2.2 Statistical Thermodynamics of Polymer Crystallization

120

4.2.3 Properties of Equilibrium Melting Points

122

4.2.3.1 Interaction Parameters

122

4.2.3.2 Molecular Weights

123

4.2.3.3 Comonomer Contents in Random Copolymers

125

4.2.4 Phase Diagrams of Polymer Solutions

126

4.3 Kinetics of Polymer Crystallization

129

4.3.1 Crystal Nucleation

129

4.3.2 Crystal Growth

137

4.3.2.1 Secondary Nucleation Models

137

4.3.2.2 Other Non-nucleation Models

144

4.3.3 Crystal Annealing

147

4.4 Summary

149

References

150

Chapter 5: Controlling Morphology Using Low Molar Mass Nucleators

156

5.1 Introduction

156

5.2 Organic Gelators

158

5.3 Synthesis of Sorbitol Derivatives

159

5.4 DBS in Polymers

160

5.5 DBS Directing Crystallisation

166

5.6 Model of Directed Crystallisation

169

5.7 Summary

170

References

171

Chapter 6: Crystallization in Nanoparticles

173

6.1 Introduction

173

6.2 Generation of Polymer Nanoparticles

175

6.3 Modification of the Crystalline Morphology by Confinement into Nanoparticles

177

6.3.1 Crystallization in Nanoparticles

180

6.3.2 From Polymer Nanoparticles to Polymer Nanocrystals

183

6.4 Summary

185

6.5 Methods

186

Bibliography

186

Chapter 7: Controlling Morphology in 3D Printing

191

7.1 Introduction

191

7.1.1 Light-Based Technologies

193

7.1.2 Print-Based Technologies

194

7.1.3 Extrusion-Based Technologies: Melt or Solution

194

7.1.3.1 Fused Deposition Modelling/Fused Filament Fabrication

194

7.2 FDM/FFF Feedstock Materials

195

7.3 Parameters in FDM/FFF 3D Printers

197

7.3.1 Surface

198

7.3.1.1 Layer Thickness

198

7.3.1.2 Part Orientation

198

7.3.2 Layer and Cross-Section

199

7.3.2.1 Gap Between Filaments

199

7.3.2.2 Layer Patterning

201

7.3.2.3 Materials Properties

201

7.3.3 Filaments

203

7.4 Case Study 1: Feedstock Material

204

7.5 Case Study 2: Deposition Speed

206

7.6 Case Study 3: Feed Roller Velocity/Screw Rotation Velocity

208

7.7 Case Study 4: Extrusion Temperature

211

7.8 Summary

214

References

214

Chapter 8: Electrically Conductive Polymer Nanocomposites

218

8.1 Introduction

218

8.2 Percolation Theory

219

8.2.1 Electrical Conductivity Mechanisms

223

8.3 Filler Effects on Polymer Nanocomposites

229

8.3.1 Aspect Ratio

229

8.3.2 Polydispersity

230

8.3.3 Orientation

232

8.3.4 Dispersion and Filler Localisation

233

8.3.5 Rheology and Mechanical Properties

236

8.3.6 Crystallisation and Morphology

239

8.4 Summary

241

References

242

Chapter 9: Nanodielectrics: The Role of Structure in Determining Electrical Properties

246

9.1 Introduction

246

9.1.1 Nanotechnology

247

9.1.2 Nanocomposites: Scales of Structure

248

9.2 Nanodielectric Properties

249

9.2.1 Surface Electrical Properties of Nanodielectrics

249

9.2.1.1 Resistance to Corona and Surface Discharges

249

9.2.1.2 Degradation of Nanocomposites: Mechanisms

250

9.2.2 Bulk Electrical Properties of Nanodielectrics

252

9.2.2.1 Breakdown Strength

252

9.2.2.2 Permittivity

254

9.2.3 Nanoparticles as Structural Modifiers

258

9.3 Theories and Models

260

9.3.1 Miscibility and Dispersion

260

9.3.2 Interfaces and Interphases

262

9.3.3 From Composition to Properties

263

9.4 Advanced Dielectrics Through Morphological Design

264

9.4.1 Polyethylene Blends

265

9.4.2 Polypropylene Blends

267

9.5 Summary

269

References

269

Chapter 10: Block Copolymers and Photonic Band Gap Materials

272

10.1 Introduction

272

10.1.1 Phase Behaviour of Block Copolymers

273

10.2 Photonic Band Gap Materials

276

10.3 Synthesis of Block Copolymers

280

10.3.1 Characterisation of Photonic Band Gap Materials

287

10.3.2 Extending to Longer Wavelengths

288

10.4 Conclusion

291

References

291

Chapter 11: Relationship Between Molecular Configuration and Stress-Induced Phase Transitions

295

11.1 Introduction

295

11.2 Isotactic Polypropylene Samples

298

11.3 Structural Analysis and Mechanical Properties

299

11.4 Optical and Atomic Force Microscopy

304

11.5 Stress-Induced Phase Transitions in Unoriented Films

307

11.6 Structural Analysis at Microscopic Length Scale

312

11.7 Structural Analysis at Lamellar Length Scale

318

11.8 Determination of Damage Effect

324

11.9 Concluding Remarks

328

References

331

Chapter 12: Summary

336

References

337

Index

338