Azees Maria

Efficient Anonymous Authentication and Key Management Techniques for Vehicular Ad-hoc Networks

Anchor Academic Publishing

disseminate knowledge

Bibliographic information published by the German National Library:

The German National Library lists this publication in the National Bibliography; detailed bibliographic data are available on the Internet at http://dnb.dnb.de .

This book is copyright material and must not be copied, reproduced, transferred, distributed, leased, licensed or publicly performed or used in any way except as specifically permitted in writing by the publishers, as allowed under the terms and conditions under which it was purchased or as strictly permitted by applicable copyright law. Any unauthorized distribution or use of this text may be a direct infringement of the author s and publisher s rights and those responsible may be liable in law accordingly.

Copyright © 2017 Diplomica Verlag GmbH ISBN: 9783960676805

Efficient Anonymous Authentication and Key Management Techniques for Vehicular Ad-hoc Networks

Azees Maria

Efficient Anonymous Authentication and Key Management Techniques for Vehicular Ad-hoc Networks

Anchor Academic Publishing

disseminate knowledge

Maria, Azees: Efficient Anonymous Authentication and Key Management Techniques for Vehicular Ad-hoc Networks, Hamburg, Anchor Academic Publishing 2017

PDF-eBook-ISBN: 978-3-96067-680-5 Druck/Herstellung: Anchor Academic Publishing, Hamburg, 2017

Bibliografische Information der Deutschen Nationalbibliothek:

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Bibliographical Information of the German National Library:

The German National Library lists this publication in the German National Bibliography. Detailed bibliographic data can be found at: http://dnb.d-nb.de

All rights reserved. This publication may not be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publishers.

Die Informationen in diesem Werk wurden mit Sorgfalt erarbeitet. Dennoch können Fehler nicht vollständig ausgeschlossen werden und die Diplomica Verlag GmbH, die Autoren oder Übersetzer übernehmen keine juristische Verantwortung oder irgendeine Haftung für evtl. verbliebene fehlerhafte Angaben und deren Folgen.

Alle Rechte vorbehalten

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung außerhalb der Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des Verlages unzulässig und strafbar. Dies gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Bearbeitung in elektronischen Systemen.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

[©] Anchor Academic Publishing, Imprint der Diplomica Verlag GmbH Hermannstal 119k, 22119 Hamburg http://www.diplomica-verlag.de, Hamburg 2017 Printed in Germany

ABSTRACT

The Vehicular ad hoc network (VANET) is an important communication paradigm in modern-day transport system for exchanging live messages regarding traffic congestion, weather conditions, road conditions, and targeted location-based advertisements to improve the driving comfort. In such environments, authentication and privacy are two important challenges needed to be addressed.

There are many existing works to provide authentication and privacy in VANETs. However, most of the existing authentication schemes are suffered from high computational cost during authentication and high communicational cost during secure key distribution to a group of vehicles. Moreover, in many existing schemes, there is no conditional tracking mechanism is available to revoke the misbehaving vehicles from the VANET system. In order to overcome these issues, four new approaches have been developed in this research work.

Firstly, a dual authentication scheme is developed to provide a high level of security in the vehicle side to effectively prevent the unauthorized vehicles entering into the VANET. Moreover, a dual group key management scheme is developed to efficiently distribute a group key to a group of users and to update such group keys during the users' join and leave operations. The major advantage of the proposed dual key management is that adding/revoking users in the VANET group can be performed in a computationally efficient manner by updating a small amount of information. The results of the proposed dual authentication and key management scheme are computationally efficient compared with all other existing schemes discussed in literature, and the results are promising. Secondly, in order to preserve the privacy of vehicle users, a computationally efficient privacy preserving anonymous authentication scheme (CPAV) is developed to anonymously authenticate the vehicle users based on the use of anonymous certificates and signatures. Even though there were many existing schemes to provide anonymous authentication based on anonymous certificates and signatures in VANETs, the existing schemes suffer from high computation cost in the certificate revocation list (CRL) checking process and in the certificate and the signature verification process. Therefore, a computationally efficient anonymous mutual authentication mechanism is proposed in this research work to preserve the privacy of the vehicle users and to guarantee the integrity of the transmitted messages. Moreover, a conditional tracking mechanism is introduced to trace the real identity of vehicles and revoke them from VANET in the case of dispute.

Thirdly, an efficient anonymous authentication scheme to preserve the privacy of RSUs is proposed in this research work. In this research work, each authenticated vehicle is required to authenticate the RSUs in an anonymous manner, before communicating with it. Because, each RSU provides the location based safety information (LBSI) to all authenticated vehicles when they are entered into its region. By doing this, each RSU provides the knowledge to vehicle users about the obstacles within its coverage area.

Finally, a computationally efficient group key distribution (CEKD) scheme for secure group communication is proposed in this research work based on bilinear pairing. In VANETs, secure and reliable group communication is an energetic area of research. Today, the most important research challenge is an efficient group key distribution for a secure group communication. Even though there are many group key distribution protocols, they have the security and performance weakness. The proposed CEKD

scheme provides better performance in comparison with most of the previously proposed key distribution schemes in terms of computation cost and hence it is suitable for secure group communication in VANETs.

ACKNOWLEGDEMENT

I, with great pleasure would like to express my heartfelt thanks to my esteemed research supervisor **Dr. P. Vijayakumar**, Assistant Professor, University College of Engineering Tindivanam, Tindivanam, for his persistent help, continued drive and timely motivation which has made this work possible. His illuminating comments and genuine suggestions enabled me to carry out this work fruitfully.

I am very much grateful to **Dr.D.Loganathan**, Professor, Department of Computer Science and Engineering, Pondicherry Engineering College, Puducherry, and to **Dr.K.Kulothungan**, Assistant Professor, Department of Information Sciences and Technology, CEG Campus, Anna University, Chennai, for acting as the doctoral committee members and to provide their valuable suggestions and encouragements throughout the period of my research.

I sincerely express my great sense of gratitude to **Dr. L. Jegatha Deborah**, Assistant Professor and Head i/c, Department of Computer Science and Engineering, University College of Engineering Tindivanam, Tindivanam for the support rendered to me at all the stages of my research.

The whole task of acknowledging seems to be incomplete if I don't owe my indebtedness and gratitude to my parents **Mr. V. Maria John Francis** and **Mrs. G. Martinammal** and my brother **Mr. M. Abeens** for their invaluable moral support at every stage of my progress in this research work. Not to mention, my family is the greatest strength behind all my endeavors. Above all, I thank **God, the Almighty** for having blessed me with all physical and mental strength in executing my will successfully.

AZEES M

TABLE OF CONTENTS

CHAPTER	NO.		TITLE	PAGE NO.
	ABSTRACT			i
	LIST	COFTA	BLES	X
	LIST	C OF FIG	GURES	xi
	LIST	COFSY	MBOLS AND ABBREVIATIONS	xii
1	INTRODUCTION			1
	1.1	VANE	T OVERVIEW	2
		1.1.1	VANET System Model	2
		1.1.2	Dedicated Short Range	
			Communication (DSRC)	5
		1.1.3	VANET Characteristics	6
	1.2	SECU	RITY ISSUES IN VANET	7
	1.3	PROP	OSED WORKS	9
	1.4	OBJEC	CTIVES OF THE RESEARCH WORK	L 10
	1.5	ASSU	MPTIONS	11
	1.6	ORGA	NIZATION OF THE THESIS	11
2	LITI	ERATUI	RE SURVEY	13
	2.1	INTRO	DUCTION	13
	2.2	SECU	RITY SERVICES OF VANETS	13
	2.3	AVAI	LABILITY IN VANETS	14
		2.3.1	Threats and Attacks on Availability	15
		2.3.2	Works on Availability	17
	2.4	CONF	IDENTIALITY IN VANETS	18
		2.4.1	Threats and Attacks on Confidentiali	ty 19

CHAPTER NO.

3

4

TITLE

	2.4.2	Works on Confidentiality	20
2.5	AUTH	ENTICATION IN VANETS	21
	2.5.1	Threats and Attacks on Authentication	21
	2.5.2	Requirements for Authentication	23
	2.5.3	Works on Authentication with Privacy	
		Preservation	24
	2.5.4	Computational Cost for Various	
		Authentication Schemes	32
2.6	DATA	INTEGRITY IN VANETS	34
	2.6.1	Threats and Attacks on Data Integrity	34
	2.6.2	Works on Data Integrity	36
2.7	NON-I	REPUDIATION IN VANETS	37
	2.7.1	Attack on Non-repudiation	37
	2.7.2	Works on Non-repudiation	37
2.8	COUN	TER MEASURES ON VARIOUS	
	SECUI	RITY ATTACKS	38
2.9	WORK	KS ON KEY MANAGEMENT	41
2.10	LITERATURE SURVEY GAPS		
2.11	PROPO	OSED WORK	43
2.12	CONC	LUSIONS	43
SYST	TEM AF	RCHITECTURE	45
DUA	L AUTI	HENTICATION AND DUAL KEY	
MAN	AGEM	ENT FOR GROUP COMMUNICATION	48
4.1	INTRO	DUCTION	48
4.2	PROPO	OSED DUAL AUTHENTICATION	
	TECH	NIQUE	50

CHAPTER NO.

5

	4.2.1	Registration through Offline Mode	52
	4.2.2	Vehicle's Authentication Process	53
	4.2.3	Trusted Authority's Authentication	
		Process and the Provision of	
		Authentication Code (AC)	54
4.3	PROPO	SED DUAL KEY MANAGEMENT	
	FOR G	ROUP COMMUNICATION	58
	4.3.1	TA Initial Set up	60
	4.3.2	Group Key Computation	61
	4.3.3	Secure Data Transmission in VANETs	63
	4.3.4	Key Updating	65
4.4	SECUR	AITY ANALYSIS	68
	4.4.1	Resistance to Replay Attack	68
	4.4.2	Masquerade and Sybil Attacks	68
	4.4.3	Message Tampering /Fabrication/	
		Alteration Attack	69
	4.4.4	Backward Secrecy	69
	4.4.5	Forward Secrecy	70
	4.4.6	Collusion Attack	71
4.5	PERFO	RMANCE ANAYSIS	72
4.6	CONCLUSIONS		
CPAV	COM	PUTATIONALLY EFFICIENT	
PRIV	ACY PF	RESERVING ANONYMOUS	
AUTH	IENTIC	CATION FOR A VEHICLE USER	
IN VA	NETS		78

5.1	INTRODUCTION	78
5.2	SECURITY REQUIREMENTS	78

CHAPTER NO.

6

102

5.3	BILINEAR PAIRING 79		
5.4	PROPOSED CPAV SCHEME		
	5.4.1	System Initialization	80
	5.4.2	Registration	81
	5.4.3	Secure Activation Key Distribution	81
	5.4.4	CPAV Secure Anonymous	
		Mutual Authentication	82
5.5	SECU	RITY ANALYSIS	85
	5.5.1	Message Integrity and Source	
		Authentication	85
	5.5.2	Conditional Privacy Preservation	86
	5.5.3	Anonymity	86
5.6	PERFO	ORMANCE ANAYSIS	87
5.7	CONC	LUSIONS	91
EFF]	ICIENT	ANONYMOUS AUTHENTICATION	
OF A	AN RSU		92
6.1	INTRO	DUCTION	92
6.2	ANON	YMOUS AUTHENTICATION	93
	6.2.1	System Initialization	93
	6.2.2	Anonymous Authentication of an RSU	94
6.3	SECU	RITY ANALYSIS	98
6.4	PERFO	ORMANCE ANALYSIS	99
	6.4.1	RSU Serving Capability	100

6.5 CONCLUSIONS

7	CEK	D: COM	PUTATIONALLY EFFICIENT	
	KEY DISTRIBUTION			103
	7.1	INTRO	DUCTION	103
	7.2	CEKD	SCHEME	104
		7.2.1	System Initialization	104
		7.2.2	VANET License Issuing	104
		7.2.3	CEKD Scheme	105
	7.3	SECUR	RITY ANALYSIS	107
	7.4	PERFO	RMANCE ANALYSIS	108
	7.5	CONC	LUSIONS	110
8	CON	CLUSIC	ONS AND FUTURE	
	WORKS		111	
	8.1	DUAL	AUTHENTICATION AND DUAL	
		KEY N	ANAGEMENT FOR GROUP	
		COMM	IUNICATION	111
	8.2	CPAV:	COMPUTATIONALLY EFFICIENT	
		PRIVA	CY PRESERVING ANONYMOUS	
		AUTH	ENTICATION	112
	8.3	EFFICI	ENT ANONYMOUS	
		AUTH	ENTICATION OF AN RSU	112
	8.4	CEKD:	COMPUTATIONALLY EFFICIENT	
		KEY D	ISTRIBUTION	113
	8.5	FUTUF	RE WORKS	113
		REFEI	RENCES	114