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Preface 

The International Council on Systems Engineering (INCOSE) defines Systems 
Engineering as an interdisciplinary approach and means to develop successful 
systems. It focuses on defining the customers needs and requirements early in  
the development cycle. It then documents the requirements. It then proceeds with the 
design synthesis and system validation and develops an overview of the complete 
problem which involves Manufacturing, Operations, Cost & Scheduling. The 
Performance, Training & Support, Testing, and Disposal are then developed. Systems 
Engineering integrates all of the disciplines and specialty groups into a joint team 
effort to form a structured development process which proceeds from the concept 
stage of production to full final operation. The full Systems Engineering operation 
considers both the business and the technical needs of all customers. The goal is to 
provide a quality product that meets the user needs and hopefully without unwanted 
surprises in the completed item. 

In the present time, these activities and processes are increasingly supported by 
means of Information Technology (IT). Support using IT always leads to the question 
of how much such processes can be either automated or semi-automated. In other 
words: is it possible to increase the quality of systems by using intelligence-based 
systems engineering. The intention of this book is to answer the questions such as 
what emerging methods and solutions are able to use intelligence-based systems 
engineering, what current solutions already exist, what theoretic constraints are 
known, and other questions ranging between theory and practice. The chapters 
contain contributions from conferences, research, PhD theses, and the experience of 
the experts in this area. In this book, we establish a research agenda and begin to fill 
the gaps in this body of knowledge. 

We hope to gain the support of practitioners and scholars by this volume. It is also 
hoped to help researchers identify domains of interest and to develop systems 
engineering to an even higher level. 
 
 

Andreas Tolk 
USA 

 
Lakhmi C. Jain 

Australia 
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Chapter 1 
Towards Intelligence-Based Systems Engineering and 

System of Systems Engineering 

Andreas Tolk, Kevin MacG. Adams, and Charles B. Keating 

Department of Engineering Management and Systems Engineering 
National Centers of System of Systems Engineering 

Old Dominion University 
Norfolk, Virginia 23508-2563, USA 

atolk@odu.edu, kmadams@odu.edu, ckeating@odu.edu 

Abstract. This introductory chapter defines intelligence-based systems with  
focus on semantic systems, simulation systems, and intelligent agents. Semantic 
systems define the foundation to communicate systems engineering challenges 
using logic, simulation systems introduce the dynamic component, and intelli-
gent agents can introduce alternatives roles. It then gives an overview of tradi-
tional systems engineering as well as system of systems engineering showing 
the need to emphasize the system of systems perspective in modern engineering 
approaches. Finally, both views are aligned, providing a scope for intelligence-
based systems engineering and the contributions of the following book chapters 
are summarized in relationship to this scope. 

Keywords: intelligent agents, ontology, semantic system, simulation system, 
system of systems engineering, systems engineering. 

1   Introduction 

The definition of insanity as “doing the same thing over and over again and expecting 
different results” is attributed to Albert Einstein. In contrast, a collective definition for 
intelligence is the ability to comprehend, to understand and profit from experience, or 
to make sense out of the environment and react appropriately. In the light of these two 
extremes, this introductory chapter defines what intelligence-based systems are, and 
what this means for systems engineering and systems of systems engineering. 

Starting with a summary of the state of the art, as among others identified by 
Buede [1], it can be observed that most of our current systems have been designed 
starting with a set of well defined requirements. These requirements are often based 
on operational concepts that identify context and external systems and that are used  
to derive (a) input and output requirements that identify what a system shall accept 
and produce, (b) system-wide and technology requirements that are building a set of 
operational constraints, (c) trade-off requirements that allow optimizing system de-
sign decisions within these constraints, and (d) qualification requirements that allow 
validation and verification to be conducted. These requirements lead to building a 
functional architecture describing the capabilities of the system, a physical architec-
ture that describes the resources that comprise the system, and finally an allocated 
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architecture that merges the functional and the physical view, including interface 
design, integration and qualification. The result is a well-defined system that has a 
well defined behavior for all identified input constellation in the form of expected 
output produced. As a rule, the capabilities defined in the functional architecture  
are fixed. The system will do the same thing over and over again. Under many cir-
cumstances, this is exactly what we would want. Nobody wants to push down the brake 
pedal of a car expecting anything else but that the car stops. We expect the same  
results. However, what if the environment changes? What if the world in which a 
system was originally defined no longer exists?, like we currently see it in so many 
military systems that were defined at the time of the Cold War, but still have to be 
used today? Simply expecting the system to change its behavior qualifies as insanity, 
so we need intelligent systems that are able to comprehend, understand and profit 
from experience. 

The next section will define intelligence-based systems. Following these defini-
tions and examples, the third section will evaluate the relation of such systems with 
systems engineering. The fourth section will do the same for the new and emerging 
field of system of systems engineering that adds at least one additional layer of com-
plexity to the challenges to be addressed. Finally, the last section will describe the 
contributions comprised in this book in the light of these findings. 

2   Intelligence-Based Systems 

Intelligence-based systems should not be confused with the often narrowly used term 
intelligence system, which refer to a variety of Artificial Intelligence (AI) methods, 
such as neural networks, evolutionary algorithms, expert systems, diagnostic systems, 
symbolic AI, and other related topical areas. These systems are limited to AI applica-
tions, and intelligent systems engineering describes the engineering of such intelligent 
systems, not the use of intelligence to support systems engineering. The scope we take 
in this chapter – and in this book in general – includes the design and engineering of 
such intelligent systems, but is not limited to this view. We are interested in merging 
the state of the art of intelligence as it can be provided via AI methods to support 
systems engineering and system of systems engineering. How can these three aspects 
be of mutual support, resulting in better systems that are able to comprehend, under-
stand and profit from experience. This is the objective of intelligence-based systems 
engineering: to base systems and their design on AI methods to build better systems. 

2.1   Characteristics of Intelligence-Based Systems 

In order to support this objective of intelligence-based systems engineering, it is first 
important to better understand the characteristic properties of intelligence-based sys-
tems. The following list is neither complete nor exclusive, but it reflects the collective 
definition of various views on AI, intelligence-based solutions, model-based predic-
tion and control, and similar contributions. Figure 1 depicts these characteristics that 
are used in the collective definition, which are self-explaining, robust, fault tolerant, 
adaptive, self-optimizing, deductive, learning, cooperative, autonomous, and agile. As  
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we will see, these terms have partly overlapping definitions and have to be understood 
in the context of the collective definition, which means that not all definitions use all 
terms. 

 

Fig. 1. Characteristic Properties of Intelligence-based Systems 

Self-explaining doesn’t mean that the system is obvious without any explanation 
necessary, but that the system can explain how it came to a certain decision. In tradi-
tional systems, the system behavior does not change. If a system is able to modify its 
behavior, it is often needed to understand how and why a decision has been made by 
the system. The explanation component of expert systems used for diagnosis, which 
traditionally could be generated by tracing the line of reasoning used by the underly-
ing inference engine to answer the questions: “Why is your answer to the question the 
one you recommend?” For systems that are able to modify themselves being able to 
explain their reason is mandatory to ensure credibility. 

Robust as a characteristic property of a system means that the system behaves well 
and adequate not only under ordinary conditions, but also under unusual conditions 
that stress the original requirements and derived assumptions. In other words, robust 
systems do not break easily, but are able to continue to behave well even under vari-
ant circumstances that could lead to failure of system. 

Fault tolerant systems behave well and continue to adequately perform even if one 
or more of its internal system components fail or break. It may be important to differ-
entiate between a fault, which is a defect in the system that can cause an error, which 
is a subset of the system status that may lead to system failure, which is a deviation in  
actual system behavior and its desired behavior according to the requirements. 

Adaptive systems in general react to changes, in particular to changes in the envi-
ronment or the context of the system. Whenever the environment or context of the 
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system changes the system itself changes as well in order to accommodate these 
changes. As a consequence, adaptive systems behave well and adequate even in 
changing environments. 

Self-organizing systems organize their internal components and capabilities in new 
structures without a central or an external authority in place. These new structures can 
be temporal and spatial. In some cases, instead of self-organizing the term self-
optimizing is used synonymously, although not all self-organizing structures represent 
the optimal structure, but the assumption is that self-organizing systems are organiz-
ing themselves to become better. 

Deductive systems are well known from mathematics: based on a set of axioms and 
rules, they can deduct new insights by applying the rules to the axioms as well as to 
the resulting new facts. This is done using an underlying inference engine. Applying 
these ideas, deductive systems can discover new facts that they can use for their deci-
sion process on how to modify themselves to behave well and adequate. 

Learning systems generally observe the achieved results and compare them with 
the desired outcome. Using methods such as reinforcement learning, decisions that led 
to positive results are enforced while those with negative results are avoided. Learn-
ing can also occur by observing other systems and the results of their activities. In 
every case, learning is connected with the observation of cause and effects. 

Cooperative systems expose social capabilities. This means that cooperative sys-
tems interact with other systems – and potentially humans as well – via some kind of 
communication language. This interaction is not limited to pure observation, but such 
a system can exchange plans, distribute tasks, etc. Whiteboard technologies are as often 
used as direct communication. An interesting side effect is that such cooperative sys-
tems can themselves then become a self-organizing system of systems. 

An autonomous system performs the desired tasks and behaves well and adequate 
even in unstructured environments without continuous human guidance. In the do-
main of robotics, autonomy is described as a collection of additional characteristics, 
in particular sensor capabilities to observe chaotic, unpredicted variables and to react 
to keep the system on track utilizing the available degrees of freedom. 

In general, agile systems are able to manage and apply knowledge effectively so 
that they behave well and adequate in continuously changing and unpredicted envi-
ronments. In systems engineering, agility is often in particular connected with the 
development phase of systems and reflects the ability to immediately react on changes 
in the requirements. 

Without doubt, additional characteristic properties can be identified that are desir-
able for such systems, such as self-healing. However, if a system is adaptive, elf-
optimizing, and fault-tolerant, self-healing is a result. Similar arguments can be made 
for the quest to reduce risk and vulnerability and other desirable characteristics. 

2.2   How to Capture Intelligence 

There are many methods applied in AI to capture intelligence. This chapter deliberately 
focuses on a limited subset that is of particular interest to systems engineering and for 
which examples are given in other chapters of this books. Using the well known cate-
gories of Ackoff [2], we distinguish between data, information, knowledge, under-
standing, and wisdom. We understand data as a collection of facts. Information is data 
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in a context allowing answering questions like who, what, where, and when. Knowl-
edge is applied information answering the question how. Understanding introduces an 
answer to the question why, and wisdom finally evaluates understanding and general-
izes the findings, allowing application of understanding in other domains than the 
original source of gaining understanding. 

In this chapter and this book, we apply semantic systems or use general ontological 
means to capture and model data and information. Applying these pieces of informa-
tion on who, what, where, and when in the context of simulation introduces the as-
pects addressed by knowledge: how. Adding agents allows running not only one but 
many simulations and comparing alternative courses of action. To communicate be-
tween agents, ontology is needed to provide the basis for the communication language 
supporting the exchange of information. Figure 2 shows the three elements applied in 
this book. 

 

Fig. 2. Components to Capture Intelligence 

A recent book edited by Yilmaz and Ören [3] copes with the various aspects of 
agent-directed simulation and systems engineering. They also show the increasing 
importance modeling and simulation methods in general and agent-directed simula-
tions in particular play for intelligence-based systems. Software agents expose many 
of the characteristic properties described earlier in this chapter. 

Agents help designing communication and coordination protocols in the system 
and may even become a surrogate for a human user. Simulation helps answering 
questions about the achieved behavior, performance and robustness, giving first feed-
back about the quality of the design. In addition, simulation can be used for decision 
support by providing “what if” scenarios as well as for training and education pur-
poses. In addition, agents are likely to replace, to a certain degree, objects that have 
traditionally been exploited in systems engineering. An interesting aspect evaluated is 
to replace the functions traditionally developed within the functional architecture of a 
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system as defined in [1] with agents. As this agent already possesses many character-
istics of intelligence-based systems, the result is likely to be close to our objective. 
However, all three aspects shown in figure 2 are important. 

Another example of interest described in [3] is autonomic computing, as it also 
shares many characteristic properties. Autonomic computing is a potential strategy 
and philosophy in systems design and management that aims to cope with increasing 
complexity in the presence of constant change addressing the area of systems of sys-
tems engineering which involves: (a) large scope and great complexity of integration 
efforts; (b) collaborative and dynamic engineering; (c) engineering under the condi-
tion of uncertainty; (d) continuing architectural reconfiguration; (e) simultaneous 
modeling and simulation of emergent behavior; and (f) stakeholders with competing 
goals and objectives. 

Utilizing the characteristics of software agents, autonomic systems are based on ar-
chitectures and mechanisms that facilitate self-configuration and adaptation through 
learning, anticipation, and robust designs to be able to adjust and fine tune system 
parameters to emerging situations in this environment. The main characteristics are 
self-configuration, self-healing, and self-optimization. The autonomic computing 
control loop moves from gathering data from resources in the system’s environment 
(sensor) to registering to be notified as the sensors observe changes in the environ-
ment (monitor). Next, the status of the environment and operational components’ 
ability to react to change is perceived, interpreted, and understood (analyze) while 
necessary information about the managed resources, data, and policies are being pro-
vided to the system (knowledge). If the analysis and knowledge cannot identify a 
proper reaction to unforeseen environmental conditions, the reasoning and planning 
components take control to generate a new plan and identify a sequence of actions to 
act on the system configurations. Then, those actions are translated into executable 
commands (execute). These key tenets of autonomic systems (sensor, monitor, ana-
lyze, knowledge, reason/plan, execute) provide a roadmap for building intelligence-
based systems using all three components mentioned above. 

However, the title of this book is not “systems engineering of intelligence-based 
systems,” but “intelligence-based systems engineering,” which also includes the ap-
plication of these methods and technologies to improve the traditional systems engi-
neering process and the emerging new field of system of systems engineering. The 
next section will describe the principles of systems engineering and identify where 
intelligence-based methods can be applied. 

3   Systems Engineering 

The genesis for systems engineering in particular in the United States has been attrib-
uted to complexity. Early pioneers in the systems engineering field emphasize in-
creasing system complexity as the principal causative factor, although they recognize 
that this is far from a complete explanation [4] [5]. To explain this, some historical 
background is warranted. 

In the late 1930s the fledgling radio, television, and telephone industries in the 
United States recognized the need for a systems approach in the development of mod-
ern telecommunications services. The Radio Corporation of America (RCA) and its 
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subsidiary, the National Broadcasting Company (NBC) were interested in the expan-
sion of their television broadcast domain. At the same time, the Bell Telephone Com-
pany was interested in the expansion of their long-distance telephone network. Both 
companies initiated technical studies aimed at increasing their markets through the 
use of new broadband technologies that were beginning to emerge in the early 1940s. 
However, these exploratory studies and experimentation were interrupted by the Sec-
ond World War. 

During the Second World War, the American military used large numbers of scien-
tists and engineers to help solve complex logistical and strategic bombing problems 
related to the war effort. Many of these efforts made significant contributions to the 
philosophy and techniques of what was then called Operations Research. At the same 
time, the need for many novel types of electronic gear for airborne use gave rise to a 
wide variety of component devices, popularly known as black boxes. These were 
ingenious devices, but their application in terms of the entire system of which they 
were merely parts was a matter of improvisation [4]. Inevitably, many of the engi-
neers and scientists working on these black boxes were required, by necessity, to look 
ahead to the ultimate goal – the system. When the war ended a number of corpora-
tions (most notably the RAND Corporation, the Bell Telephone Laboratories and 
RCA) hired much of this pool of talented scientists and engineers to provide services 
to both the government and the telecommunications industry. These seasoned practi-
tioners were able to capitalize upon the lessons from their war-time experiences in the 
development and implementation of the modern telecommunications and electrical 
power systems. The telecommunications system development efforts provide for 
much of the early literature on systems engineering. Schlager [6], in a nationwide 
survey found that the Bell Telephone Laboratories was probably the first organization 
to use the term systems engineering. If true, this places the start of what we call sys-
tems engineering, in the early 1940s. 

3.1   Traditional Systems Engineering 

The emergence of systems engineering in the 1940s was an outgrowth of the need to 
deal with large, expensive systems. The early textbooks [5] [7] [8] on systems engi-
neering had an emphasis on topics such as decision making, problem solving, and 
analysis of alternatives. The texts relied heavily on the techniques and analytical 
methods from Operations Research [9] [10] [11]. A 1957 definition of systems engi-
neering characterizes its early role [12]. 

“The design of systems in which the output is a set of specifications 
suitable for constructing a real system out of hardware.” (p. 1-4) 

Over the next 30 years systems engineering assumed responsibility for not only the 
technical elements surrounding systems, but the life cycle management responsibili-
ties as well. Systems engineering was, in-part, responsible for the delivery of large 
complicated projects of national importance that included the Polaris submarine, and 
the Mercury and Gemini space programs. By 1998 the definition of systems engineer-
ing had evolved to [13]. 
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“An interdisciplinary collaborative approach to derive, evolve, and 
verify a life-cycle balanced system solution which satisfies customer 
expectations and meets public acceptability.” (p. 11) 

In 30 years, systems engineering had evolved to include life-cycle management  
responsibilities, customers, and the public in its definition. Traditional Systems Engi-
neering (TSE) has developed the frameworks and methodologies [13] [14] to success-
fully conceive, design, acquire, and field large multi-purpose systems. Three often 
used models developed in support of TSE most readers will recognize are (a) the 
waterfall model [15], (b) the Vee-model [16], and (c) the spiral model [17]. 

The waterfall model is characterized by the sequential evolution of phases in which 
as a rule only the two consecutive phases are connected with each other and the feed-
back is seen as the exception, not the rule. It starts with a set of requirements that are 
refined for the system and its component, followed by an analysis. The analysis is 
followed by the detailed design and the implementation of this design. Once the sys-
tem is implemented, it is tested and afterwards operationally used. Some newer ver-
sions include maintenance and retirement as well. All versions of the waterfall model 
have the philosophy in common that if the engineer is doing a good job in all phases, 
he can successfully reach the project end. The Vee-model follows a slightly different 
philosophy by integrating the user into the engineering process. It starts with user 
requirements and ends with user acceptance. The two parts of the Vee are built by the 
phases comprised in the decomposition and definition of system components in the 
downward steps, and the integration and verification phases building the upward 
steps. On all levels, phases of the decomposition and definition are connected to re-
spective integration and verification phases, such as verifying that the correct parts are 
built, verifying that configuration items are assembled correctly, verifying that the 
system performs as requested, and validating that the system fulfills all requirements. 
Overall, the feedback between the different phases and the possibility of corrections 
of earlier phases that are not necessarily mistakes of the systems engineer build the 
philosophy. The last model, the spiral model, is based on waterfall and Vee model 
ideas. It assumes that several iterations through the phases of these models will  
be needed resulting in a spiral in which each iteration leads to the next iterations ob-
jectives. Feedback is the rule and no longer the exception.  The spiral model is an 
iterative model that combines elements of the classic waterfall model with the charac-
teristic of prototyping and produces an evolutionary approach to engineering. The 
four major phases are (1) management planning, (2) engineering, (3) customer evalua-
tion, and (4) risk analysis.  The major distinguishing feature of the spiral is that by 
including a formal risk analysis phases, it introduced a risk-driven approach to the 
development process. 

Systems Engineering therefore evolved well. However, the 21st century presented a 
new problem for systems engineering: the system of systems. The next section will 
exemplify that the traditional methods are insufficient to address these new challenges 
so that a new theory is needed that allows to derive methods and implement solutions. 

3.2   System of Systems 

Most 20th century systems were designed and implemented to satisfy specific func-
tional objectives. The objectives were typically focused on the requirements in a single 
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functional area (i.e. accounting, inventory control, manufacturing, railroads, highways, 
etc.), resulting in a number of vertically independent, or stove-piped, systems within an 
organization or society. Few were designed to satisfy all of the functions required by 
the organization or society they were serving and as such are classified as monolithic 
in structure. 

Today, large numbers of 20th century systems operate within these functional 
stovepipes, providing functionality inside but not across the stovepipes. Initial efforts 
to bridge the functional stovepipes have focused on integrating 20th century systems 
through a series of system-to-system interfaces. However, 21st century managers are 
no longer satisfied with disparate systems lashed together with complex interfaces and 
data validation routines. Enterprise Resource Planning (ERP) systems were supposed 
to be the panacea for the business world, replacing stove-piped legacy systems with a 
single system encompassing all of a company’s functional requirements. In 1998 it 
was estimated that businesses around the world were spending $10 billion per year 
[18] on enterprise systems and that figure probably doubles when you add in associ-
ated consulting expenses. 

By the turn of the century, a new type of system, beyond that envisioned by the late 
Russell Ackoff in his paper The Systems Revolution [19], began to emerge. It is the 
super-system, the metasystem, the system-of-systems which is made up of compo-
nents which are large-scale systems themselves. If we are to understand system-of-
systems we must be able to differentiate them from the more common monolithic 
systems. 

Although the term system-of-systems has no widely accepted definition, Maier 
notes that the notion is widespread and generally recognized [20]. The following 
distinguishing characteristics have been proposed [20] [21]. 

1. Operational Independence of the Individual Systems: A system-of-systems is 
composed of systems that are independent and useful in their own right. If a system-
of-systems is disassembled into the component systems, these component systems are 
capable of independently performing useful operations independently of one another. 

2. Managerial Independence of the Systems: The component systems not only can 
operate independently, they generally do operate independently to achieve an in-
tended purpose. The component systems are generally individually acquired and inte-
grated and they maintain a continuing operational existence that is independent of the 
system of systems. 

3. Geographic Distribution: Geographic dispersion of component systems is often 
large. Often, these systems can readily exchange only information and knowledge 
with one another, and not substantial quantities of physical mass or energy. 

4. Emergent Behavior: The system-of-systems performs functions and carries out 
purposes that do not reside in any component system. These behaviors are emergent 
properties of the entire system-of-systems and not the behavior of any component 
system. The principal purposes supporting engineering of these systems are fulfilled 
by these emergent behaviors. 

5. Evolutionary Development: A system-of-systems is never fully formed or com-
plete. Development of these systems is evolutionary over time and with structure, 
function and purpose added, removed, and modified as experience with the system 
grows and evolves over time. 
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These distinguishing characteristics begin to place some degree of formality on the 
notion of system-of-systems, but something is missing. In order to go beyond the tradi-
tional perspective of a fully integrated system-of-systems which perfectly shares data 
in what we call hard interoperability, we must invoke a more systemic view. The ideal 
state for a system-of-systems requires what we will call systemic interoperability. Sys-
temic interoperability is a holistic view of interoperability and requires compatibility in 
worldview and conceptual, contextual, and cultural interoperability, allowing the sys-
tem-of-systems to act consistently with regard to purpose, function, and form. In other 
words, it is not sufficient to align the implementation details of the participating sys-
tems, but the underlying conceptualization and the assumptions and constraints need to 
be aligned as well. This is where System of Systems Engineering comes into play. 

3.3   System of Systems Engineering 

During the evolution of TSE, the educational texts [22] [23] [24] and curricula elimi-
nated topics on the fundamental concepts and properties associated with systems and 
include few soft topics to encompass the rich context and human situations that real-
world systems of systems engineering problems present. 

Man-made systems of systems require a holistic, systemic understanding of both 
the technical problem and the contextual framework present in order to arrive at satis-
factory solutions. A new set of methodologies and frameworks based upon formal 
systems principles are required. The new methodologies will also require new sup-
porting methods, techniques, and tools. 

The emerging discipline of System of Systems Engineering (SoSE) is attempting to 
address the problems associated with systems-of-systems. Because these problems are 
messy traditional methodologies of systems engineering are excluded from considera-
tion in this context. Russell Ackoff coined the concept of a “mess” and “messes” [25]: 

“Because messes are systems of problems, the sum of the optimal  
solutions to each component problem taken separately is not an  
optimal solution to the mess. The behavior of the mess depends more 
on how the solutions to its parts interact than on how they interact 
independently of each other. But the unit in OR is a problem, not a 
mess. Managers do not solve problems, they manage messes.” (p. 
100) 

Keating et al. [26] cite three important problems that TSE is not prepared to address 
when facing a complex metasystem problem: 

1. Has not been developed to address high levels of ambiguity and uncertainty 
in complex systems problems . . . it strains to adequately respond to ill-
structured problems with constantly shifting requirements. 

2. Does not completely ignore contextual influences on system problem formu-
lation, analysis, and resolution, but places context in the background. 

3. Is not prepared to deliver incomplete or partial solutions that include iterative 
design and implementation after deployment. 
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Keating et al [26] provisionally define SoSE as: 

“The design, deployment, operation, and transformation of  
metasystems that must function as an integrated complex system to 
produce desirable results. These metasystems are themselves  
comprised of multiple autonomous embedded complex systems that 
can be diverse in technology, context, operation, geography, and 
conceptual frame.” (p. 23) 

Multiple, autonomous, embedded, complex systems function as a single meta-system, 
or system-of-systems. This is possibly the most daunting task ever presented to sys-
tems engineers. It exists within a unique new context and will require an entirely new 
methodological problem solving approach. 

From a programmatic and enterprise viewpoint, TSE emphasized a system-centric 
view with individually designed, developed, implemented and optimized solutions, 
which necessarily incorporated the danger of stovepipes and fragmentation. What is 
envisioned, however, is an integrated system approach in which each system provides 
capabilities in an easy and composable way to support the rapid reconfiguration. To 
support this vision, a methodology is needed that guides systems engineers in the new 
system of systems problem domain. 

3.4   System of Systems Engineering Methodology 

Currently, there is no widely accepted approach to conducting System of Systems 
Engineering (SoSE) efforts. However, there is recognition that approaches must  
address challenges of increasingly complex systems that must be conceived, built, 
operated, and evolved in a changed landscape marked by: (1) an exponential rise in 
the demand, accessibility, and proliferation of information, (2) increasing interde-
pendence and demands for interoperability between systems that have previously 
been developed, tested, operated, and maintained in isolation, (3) missions and flow 
down requirements that are subject to rapid and potentially radical shifts due to pol-
icy, organizational, funding, or other factors beyond the technical aspects of the sys-
tem, and (4) demands for the accelerated fielding of systems that are technically  
incomplete, but offer an improved alternative to what is presently available [27]. 

The SoSE Methodology [28] is a rigorous engineering analysis that invests heavily 
in the understanding and framing of the problem under study. By conducting a rigor-
ous engineering analysis of the problem and its associated context, the SoSE Method-
ology minimizes the chance that a Type III error or solving the wrong problem  
precisely and efficiently [29] [30] may be committed early on in a SoSE analysis. It is 
important that the SoSE Methodology is not taken as a prescriptive approach to ad-
dressing complex SoSE problems. Instead, the SoSE Methodology must be taken as a 
guide, to be adapted to the particular circumstances that define its application. Other-
wise, it will not serve its intended purpose: to provide a high level adaptable structure 
to guide rigorous exploration of complex systems problem situations. 

The SoSE Methodology is intended to provoke rigorous analysis – resulting in the 
potential for alternative decision, action, and interpretations for evolving complex 
system of systems solutions. The SoSE Methodology is based in facilitating inquiry 
that is as much about thinking and framing of problems, their context, and managing 
emergent conditions as it is about taking decisive action. The SoSE Methodology was  
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purposefully built and seeks to provoke higher levels of inquiry, systemic analysis, 
and advance understanding of seemingly intractable problems enroute to more robust 
solutions. 

We position the SoSE Methodology to be consistent with Checkland’s [31] per-
spective of a methodology, which suggests that a methodology provides a framework, 
more specific than philosophy, but more general than a detailed method or tool. 
Therefore, a systems-based methodology must provide a framework that can be 
elaborated to effectively guide action. There are several critical attributes for a meth-
odology and these are consistent with the current state of evolution for the SoSE 
Methodology. These critical attributes are discussed in the next section. 

There are several critical attributes in the SoSE Methodology that are consistent 
with the current state of evolution for SoSE. Although the listing is certainly not in-
tended to be exhaustive, we offer these as insight to our thinking with respect to the 
characteristics that make the SoSE Methodology sustainable. The nine (9) critical 
attributes and how the SoSE Methodology satisfies these are presented in Table 1. 

Table 1. Critical Attributes of the SoSE Methodology 

Attribute Explanation 
Transportable Must be capable of application across a spectrum of complex systems engineering 

problems and contexts. The appropriateness (applicability) of the methodology to a 
range of circumstances and system problem types must be clearly established as the 
central characteristic of transportability. 

Theoretically and 
Philosophically 
Grounded 

Must have a linkage to a theoretical body of knowledge as well as philosophical 
underpinnings that form the basis for the methodology and its application. The 
theoretical body of knowledge for the SoSE Methodology is systems theory. 

Guide to Action Must provide sufficient detail to frame appropriate actions and guide direction of 
efforts to implement the methodology. While not prescriptively defining how  
execution must be accomplished, the methodology must establish the high level 
what’s that must be performed. 

Significance Must exhibit the holistic capacity to address multiple problem system domains, 
minimally including contextual, human, organizational, managerial, policy,  
technical, and political aspects of a SOSE problem. 

Consistency Must be capable of providing replicability of approach and results interpretation 
based on deployment of the methodology in similar contexts. The methodology is 
transparent, clearly delineating the details of the approach for design, analysis, and 
transformation of the SOS. 

Adaptable Must be capable of flexing and modifying the approach, configuration, execution, or 
expectations based on changing conditions or circumstances – remaining within the 
framework of the guidance provided by the methodology, but adapting as necessary 
to facilitate systemic inquiry.  

Neutrality Attempts to minimize and account for external influences in application and  
interpretation. A methodology must provide sufficient transparency in approach, 
execution, and interpretation such that biases, assumptions, and limitations are 
capable of being made explicit and challenged within the methodology application. 

Multiple Utility Supports a variety of applications with respect to complex SOS, including, new 
system design, existing system transformation, and assessment of existing complex 
SOS initiatives. 

Rigorous Must be capable of withstanding scrutiny with respect to: (1) identified linkage/basis 
in a body of theory and knowledge, (2) sufficient depth to demonstrate detailed 
grounding in relationship to systemic underpinnings, including the systems  
engineering discipline, and (3) capable of providing transparent results that are 
replicable with respect to results achieved and accountability for explicit logic used 
to draw conclusions/interpretations. 
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The foundations of the SoSE Methodology are found in two primary aspects, 
namely (a) the theoretical and philosophical foundations for systems and (b) the seven 
perspectives of an enabling methodology shown in figure 3. 

Perspective I
Framing the System
Under Study

Perspective II
Designing the Unique
Methodology

Perspective IV
SoSE Exploration and Analysis

Perspective III
Designing the SoSE
Team

Perspective VII
Assessing the Impact
of the SoSE Study

Perspective VI
Reporting the Results
of the SoSE Study

Perspective V
Transforming the
Analysis into Action

Foundation
Systems Principles

 

Fig. 3. The SoSE Methodology 

First, the underlying theoretical and philosophical grounding are derived from sys-
tems theory. The principles, laws, and concepts central to the SoSE Methodology are 
from systems theory [32]. These principles, laws, and concepts are central to every-
thing that follows in application of the SoSE Methodology to a specific problem do-
main. In effect, they define the thinking that supports following decision, action, and 
interpretation essential to effective SoSE. This sets the stage for a consistent approach 
to deployment of the SoSE Methodology by participants. 

The second aspect of the SoSE Methodology is found in the seven perspectives 
that exist throughout a SoSE effort. Each perspective is: 

• Essential to a holistic SoSE treatment of a problem area, 

• Applied in iterative fashion throughout a SoSE project effort, 

• Exists in relationship to all other perspectives, informing and informed by 
other perspectives, 

• Can have a different priority at different times during an effort, 

• Flexible in application, requiring tailoring depending on the context and 
problem domain, and 

• Consists of detailed elements (that will vary in application) that serve to 
structure the application of the perspectives. 
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Each of the seven perspectives is briefly presented in the following paragraphs. 

Perspective I: Framing the System under Study. This perspective is designed to rigor-
ously structure the system problem, the contextual setting and environment within 
which the problem system exists. Key execution elements in this perspective include: 

• Generalize the Wide Context for the System under Study – establish the cir-
cumstances, factors, conditions, and patterns that are characteristic of the 
situation surrounding the system of systems (SoS). 

• Characterize the System under Study – understand the basic structure and 
characteristics of the system of systems under study, including the SoS’s ob-
jectives, functions, environment, resources, components, and management. 

• Characterize the Complex Nature of the System Domain under Study –  
establish the complex nature of the SoS and problem domain. 

• Present the System Domain as Characteristically Complex - present the SoS 
under study as a complex systems problem. 

• Frame the SoSE Problem - depict the problem situation by expressing the 
structure, elements of processes and the situation. 

• Define Study Purpose, Reformulated Problem Statements and Objectives - 
clearly explain the nature, purpose, high-level approach, and objectives for 
the effort. 

• Conduct Stakeholder Analysis - explicitly account for and address the multi-
ple interests (rational and irrational, inside & outside) which can impact 
achievement of system objectives. 

• Conduct Contextual Analysis - account for the set of circumstances, factors, 
conditions, values and/or patterns that are influential in constraining and 
enabling the SoS engineering process, the SoS solution/recommendation  
design, SoS solution/recommendation deployment considerations, and inter-
pretation of outputs/outcomes stemming from the effort. 

Perspective II: Designing the Unique Methodology. This perspective designs a unique 
methodology based on the problem and the problem context. 

• Construct High-Level Design for the Study - construct a unique high-level 
methodology that will adequately support the study objectives and the SoS 
context. This must be compatible with the problem and problem context. 

• Develop the Analytic Strategy - create the design for quantitative and quali-
tative exploration (data collection and analysis) necessary to understand and 
make decisions concerning the SoS under study. 

• Develop Assessment Criteria and Plan - construct a set of measurable per-
formance criteria that can be used during and after the problem study to en-
sure continued fit of problem, context, methodology and capability to meet 
study objectives. 

Perspective III: Designing the SoSE Team. This perspective designs the team to  
undertake the SoSE study, taking into account the nature of the SoS problem and the 
team resources, skills, and knowledge that can be brought to bear for the problem. 


