

Andreas Tolk and Lakhmi C. Jain

Intelligence-Based Systems Engineering

Intelligent Systems Reference Library,Volume 10

Editors-in-Chief

Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw
Poland
E-mail: kacprzyk@ibspan.waw.pl

Prof. Lakhmi C. Jain
University of South Australia
Adelaide
Mawson Lakes Campus
South Australia 5095
Australia
E-mail: Lakhmi.jain@unisa.edu.au

Further volumes of this series can be found on our homepage: springer.com

Vol. 1. Christine L. Mumford and Lakhmi C. Jain (Eds.)
Computational Intelligence: Collaboration, Fusion
and Emergence, 2009
ISBN 978-3-642-01798-8

Vol. 2.Yuehui Chen and Ajith Abraham
Tree-Structure Based Hybrid
Computational Intelligence, 2009
ISBN 978-3-642-04738-1

Vol. 3.Anthony Finn and Steve Scheding
Developments and Challenges for
Autonomous Unmanned Vehicles, 2010
ISBN 978-3-642-10703-0

Vol. 4. Lakhmi C. Jain and Chee Peng Lim (Eds.)
Handbook on Decision Making: Techniques
and Applications, 2010
ISBN 978-3-642-13638-2

Vol. 5. George A.Anastassiou
Intelligent Mathematics: Computational Analysis, 2010
ISBN 978-3-642-17097-3

Vol. 6. Ludmila Dymowa
Soft Computing in Economics and Finance, 2011
ISBN 978-3-642-17718-7

Vol. 7. Gerasimos G. Rigatos
Modelling and Control for Intelligent Industrial Systems, 2011
ISBN 978-3-642-17874-0

Vol. 8. Edward H.Y. Lim, James N.K. Liu, and Raymond S.T. Lee
Knowledge Seeker – Ontology Modelling for Information
Search and Management, 2011
ISBN 978-3-642-17915-0

Vol. 9. Menahem Friedman and Abraham Kandel
Calculus Light, 2011
ISBN 978-3-642-17847-4

Vol. 10.Andreas Tolk and Lakhmi C. Jain
Intelligence-Based Systems Engineering, 2011
ISBN 978-3-642-17930-3

Andreas Tolk and Lakhmi C. Jain

Intelligence-Based Systems
Engineering

123

Prof.Andreas Tolk
Engineering Management & Systems

Engineering

242B Kaufman Hall
Old Dominion University

Norfolk,VA 23529

USA
E-mail: atolk@odu.edu

Prof. Lakhmi C. Jain
School of Electrical and Information

Engineering

University of South Australia
Adelaide

Mawson Lakes Campus

South Australia SA 5095
Australia

E-mail: Lakhmi.jain@unisa.edu.au

ISBN 978-3-642-17930-3 e-ISBN 978-3-642-17931-0

DOI 10.1007/978-3-642-17931-0

Intelligent Systems Reference Library ISSN 1868-4394

c© 2011 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilm or in any other way,
and storage in data banks. Duplication of this publication or parts thereof is permitted
only under the provisions of the German Copyright Law of September 9, 1965, in
its current version, and permission for use must always be obtained from Springer.
Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publi-
cation does not imply, even in the absence of a specific statement, that such names are
exempt from the relevant protective laws and regulations and therefore free for general
use.

Typeset & Cover Design: Scientific Publishing Services Pvt. Ltd., Chennai, India.

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

Preface

The International Council on Systems Engineering (INCOSE) defines Systems
Engineering as an interdisciplinary approach and means to develop successful
systems. It focuses on defining the customers needs and requirements early in
the development cycle. It then documents the requirements. It then proceeds with the
design synthesis and system validation and develops an overview of the complete
problem which involves Manufacturing, Operations, Cost & Scheduling. The
Performance, Training & Support, Testing, and Disposal are then developed. Systems
Engineering integrates all of the disciplines and specialty groups into a joint team
effort to form a structured development process which proceeds from the concept
stage of production to full final operation. The full Systems Engineering operation
considers both the business and the technical needs of all customers. The goal is to
provide a quality product that meets the user needs and hopefully without unwanted
surprises in the completed item.

In the present time, these activities and processes are increasingly supported by
means of Information Technology (IT). Support using IT always leads to the question
of how much such processes can be either automated or semi-automated. In other
words: is it possible to increase the quality of systems by using intelligence-based
systems engineering. The intention of this book is to answer the questions such as
what emerging methods and solutions are able to use intelligence-based systems
engineering, what current solutions already exist, what theoretic constraints are
known, and other questions ranging between theory and practice. The chapters
contain contributions from conferences, research, PhD theses, and the experience of
the experts in this area. In this book, we establish a research agenda and begin to fill
the gaps in this body of knowledge.

We hope to gain the support of practitioners and scholars by this volume. It is also
hoped to help researchers identify domains of interest and to develop systems
engineering to an even higher level.

Andreas Tolk
USA

Lakhmi C. Jain

Australia

Contents

Chapter 1

Towards Intelligence-Based Systems Engineering and
System of Systems Engineering . 1
Andreas Tolk, Kevin MacG. Adams, Charles B. Keating

1 Introduction . 1
2 Intelligence-Based Systems . 2

2.1 Characteristics of Intelligence-Based Systems 2
2.2 How to Capture Intelligence . 4

3 Systems Engineering . 6
3.1 Traditional Systems Engineering 7
3.2 System of Systems . 8
3.3 System of Systems Engineering . 10
3.4 System of Systems Engineering Methodology 11
3.5 Intelligence-Based Systems Engineering 16

4 Contributions to These Topics within This Volume 18
References . 20

Chapter 2

Future Directions for Semantic Systems . 23
John F. Sowa

1 The Knowledge Acquisition Bottleneck 23
2 Natural Language Processing . 24
3 Reasoning and Problem Solving . 27
4 Semantic Web . 30
5 Language Analysis and Reasoning . 35
6 Integrating Semantic Systems . 43
References . 45

Chapter 3

Defining and Validating Semantic Machine to Machine
Interoperability . 49
Claudia Szabo, Saikou Y. Diallo

1 Introduction . 49
2 State of the Art in Interoperability . 50

VIII Contents

2.1 Semantics of Data for a Machine 53
2.2 Formal Representation of Data for a Machine 55
2.3 Semantic Machine to Machine Interoperability 58

3 Formal Validation of Interoperable Federations 63
3.1 Knowledge Representation . 66
3.2 Formal Validation of Model Execution 68
3.3 Reference Model . 68
3.4 Formal Validation Process . 69

4 Summary and Recommendations . 72
References . 72

Chapter 4

An Approach to Knowledge Integration Applied to a
Configuration Problem . 75
Maria Vargas-Vera, Miklos Nagy, Dietmar Jannach

1 Introduction . 75
2 Related Work . 77

2.1 Expert Systems - Knowledge Bases 77
2.2 Ontologies View . 78
2.3 Databases . 80
2.4 Knowledge Management. 80

3 Scenario . 81
3.1 Constraint Satisfaction Problem (CSP) 82
3.2 Case Study: Computer Configuration Problem 83
3.3 Constraint Graph . 84

4 Mapping Process . 84
5 Knowledge Integration Framework . 92

5.1 Algorithms for Detecting and Correcting
Overlappings . 94

6 Evaluation . 97
6.1 Mapping Quality . 99
6.2 Configuration Quality . 100

7 Conclusions . 102
References . 103

Chapter 5

Simulation-Based Systems Design in Multi-actor
Environments . 107
Michele Fumarola, Mamadou D. Seck, Alexander Verbraeck

1 Introduction . 107
1.1 Outline of the Chapter . 108

2 Designing Systems . 108
3 Systems Approaches . 111

3.1 Systems Simulation in Design . 112
3.2 Soft Systems Methodology . 113

Contents IX

4 Designing a Multimethodological Approach 118
4.1 Component Based Modeling . 118
4.2 Different Levels of Abstraction . 119
4.3 Structing Alternatives . 121
4.4 Participatory Design . 123

5 Conclusion . 123
References . 124

Chapter 6

Distributed Simulation Using RESTful Interoperability
Simulation Environment (RISE) Middleware 129
Khaldoon Al-Zoubi, Gabriel Wainer

1 Introduction . 129
2 Background on Distributed Simulation 132
3 RISE Middleware API . 136
4 RISE-based Distributed CD++ Simulation Algorithms 137

4.1 Distributed CD++ (DCD++) Architecture 139
4.2 DCD++ Simulation Synchronization Algorithms 143

5 Distributed Simulation Interoperability Standards 148
References . 155

Chapter 7

Agile Net-Centric Systems Using DEVS Unified Process 159
Saurabh Mittal

1 Introduction . 160
2 Related Technologies . 162
3 DEVS Unified Process with DEVS/SOA 163

3.1 Discrete Event Systems Specification 163
3.2 Web Services and Interoperability Using XML 165
3.3 An Abstract DEVS Service Agent 166
3.4 DEVS/SOA Framework for Net-Centric Modeling

and Simulation . 166
3.5 DEVS Unified Process a.k.a DUNIP 169

4 Multi-layered Agent-Based Test Instrumentation System
Using GIG/SOA . 171
4.1 Deploying Test Agents over the GIG/SOA 172
4.2 Implementation of Test Federations 173

5 Abstract DEVS Service Wrapper . 174
6 Workflow Composition and DoDAF-Based Mission

Threads . 175
6.1 Web Service Work Flow Formalism 177
6.2 Mapping of DEVS, BPEL and DoDAF Artifacts

with WSWF Formalism . 180
7 Case Study . 182

X Contents

7.1 DEVS Wrapper Agent . 182
7.2 Workflow Design, Analysis and Execution 185

8 Agility in DEVS Unified Process . 191
9 Conclusions and Future Work . 193
10 Acronyms . 196
References . 197

Chapter 8

Systems Engineering and Conversational Agents 201
James O’Shea, Zuhair Bandar, Keeley Crockett

1 Introduction . 201
2 The Scope of CAs . 202

2.1 Spoken Dialogue Systems . 202
2.2 Chatterbots . 203
2.3 Natural Language Processing Based Dialogue

Management Systems . 203
2.4 Goal-Oriented CAs . 204
2.5 Embodied CAs . 206

3 Practical Applications of CAs . 207
3.1 CAs for Selling . 207
3.2 A GO-CA Student Debt Advisor 210

4 Design Methodology for GO-CAs . 212
4.1 Knowledge Engineering . 212
4.2 Implementation . 213
4.3 Scripting Language . 214
4.4 Evaluation . 217
4.5 Maintenance . 219

5 Novel Algorithms – Short Text Semantic Similarity 221
5.1 The STASIS Algorithm . 222
5.2 Latent Semantic Analysis . 224

6 Research Opportunities . 225
7 Conclusions . 226
References . 227

Chapter 9

Advanced Concepts and Generative Simulation Formalisms
for Creative Discovery Systems Engineering 233
Levent Yilmaz, C. Anthony Hunt

1 Introduction . 233
1.1 Motivation . 236
1.2 Scientific Problem Solving with Computational

Models . 236
2 Models and Principles of Creative Problem Solving 239

2.1 Background . 239
2.2 Models of Creative Cognition . 240

Contents XI

3 Generative Parallax Simulation: Basic Concepts 242
3.1 An Abstract Model of Creative Cognition 242
3.2 Abstract Specification of the Structure and

Dynamics of GPS . 243
3.3 Implications of the Ecological Perspective 246

4 Meta-simulation of GPS . 246
4.1 Conceptual Model for GPS Simulator 246
4.2 Meta-simulation Parameters . 249
4.3 Qualitative Analysis of Results and Discussion 249

5 Discussion and Future Work . 255
5.1 Improving Autonomy in Schema Evolution and

Diffusion . 255
5.2 Toward Adaptive Growth of Analogue Ensembles

for Creative Discovery Systems . 256
5.3 Strategic and Context Sensitive Exploration 256

6 Conclusions . 257
References . 257

Chapter 10

Establishing a Theoretical Baseline: Using Agent-Based
Modeling to Create Knowledge . 259
Jose J. Padilla, Saikou Y. Diallo, Andres A. Sousa-Poza

1 Introduction . 259
2 Systems Engineering and Its Challenges 260
3 Theory and Theory Creation . 263
4 Building Theory through M&S . 266

4.1 Existing M&S Methodologies/Methods for Theory
Building . 270

4.2 A Methodology for Theory Building Using M&S 274
4.3 Selecting the Modeling Paradigm 275

5 Test Case: Building a Theory of Understanding Using
Agents . 276
5.1 Brief on ABM and Its Relevance on Theory

Building . 276
5.2 Importance of Understanding to Problem

Situations . 277
5.3 Implementing the Methodology for Theory Building

Using M&S . 277
6 Final Remarks and Conclusion . 281
7 List of Acronyms . 282
References . 282

XII Contents

Chapter 11

“The User Around the Marketplace”: Automatic
Engineering of Interactive E-commerce Applications 285
Mart́ın López-Nores, Yolanda Blanco-Fernández, José J. Pazos-Arias

1 Introduction . 285
2 Background . 287
3 Elements to Engineer Personalized Interactive

Applications . 290
4 The Personalization Procedures . 293

4.1 Reasoning-Driven Recommendation of Items 293
4.2 Composition of Interactive Commercial

Applications . 295
4.3 Feedback . 296

5 Our Proposal in DTV Advertising . 297
5.1 A Simple Example . 298
5.2 Experimental Evaluation . 300

6 Conclusion . 303
References . 303

Chapter 12

Wireless Sensor Network Anomalies: Diagnosis and
Detection Strategies . 309
Raja Jurdak, X. Rosalind Wang, Oliver Obst, and Philip Valencia

1 Introduction . 309
2 Types of WSN Anomalies . 310

2.1 Network Anomalies . 313
2.2 Node Anomalies . 315
2.3 Data Anomalies . 316
2.4 Other Anomalies . 318

3 Anomaly Detection Strategies . 318
3.1 Architecture . 320
3.2 Usability . 321

4 Design Guidelines and Conclusions . 323
References . 324

Chapter 13

Enterprise Ontologies – Better Models of Business 327
Ian Bailey

1 Introduction – Intelligence-Led Systems Engineering 327
1.1 Introduction – Business Ontologies 329
1.2 Information System Requirements Gathering 329
1.3 Driving-Out Complexity . 331
1.4 Stovepipes . 331

2 What Is Needed for Better Information Systems? 332

Contents XIII

2.1 Better Analysis – Getting Your Hands Dirty 333
2.2 Flexibility – Using the Full Range of Logic 334
2.3 Consistency – Sophisticated, Repeatable Analysis . . . 335
2.4 Implementation – New Ways of Storing 335

3 A New Approach to Information Systems Development 336
3.1 Introducing the BORO Method 336
3.2 Managing Time . 337

4 Addressing Arguments against Ontology 340
5 Conclusions . 341

5.1 Literature Search . 341
References . 341

Author Index . 343

List of Contributors

Kevin MacG. Adams
National Centers of System of
Systems Engineering
Old Dominion University
Norfolk, VA, USA

Khaldoon Al-Zoubi
Dept. of Systems and Computer
Engineering Carleton University
Ottawa, ON. K1S 5B6
Canada

Ian Bailey
Model Futures Limited
London, United Kingdom

Zuhair Bandar
School of Computing, Mathematics &
Digital Technology
Manchester Metropolitan University
Manchester M1 5GD
United Kingdom

Yolanda Blanco-Fernández
Department of Telematics
Engineering
University of Vigo
Vigo, Spain

Keeley Crockett
School of Computing, Mathematics &
Digital Technology
Manchester Metropolitan University
Manchester M1 5GD
United Kingdom

Saikou Y. Diallo
Virginia Modeling Analysis and
Simulation Center
Old Dominion University
Norfolk, VA, USA

Michele Fumarola
Delft University of Technology
The Netherlands

C. Anthony Hunt
Department of Bioengineering and
Therapeutic Sciences
University of California
San Francisco, CA, USA

Dietmar Jannach
Technical University of Dortmund
Baroperstraße 301
D-44227 Dortmund, Germany

Raja Jurdak
CSIRO ICT Centre
and University of
Queensland/School of ITEE
Brisbane, QLD
Australia

Charles B. Keating
Engineering Management and
Systems Engineering
Old Dominion University
Norfolk, VA, USA

XVI List of Contributors

Martín López-Nores
Department of Telematics
Engineering
University of Vigo
Vigo, Spain

Saurabh Mittal
Dunip Technologies
Tempe, AZ, USA

Miklos Nagy
KMI, Open University
Milton Keynes, MK7 6AA
England, UK

Oliver Obst
CSIRO ICT Centre
Sydney, NSW
Australia

James O’Shea
School of Computing, Mathematics &
Digital Technology
Manchester Metropolitan University
Manchester M1 5GD
United Kingdom

José J. Padilla
Virginia Modeling Analysis and
Simulation Center
Old Dominion University
Norfolk, VA, USA

José J. Pazos-Arias
Department of Telematics
Engineering
University of Vigo
Vigo, Spain

Mamadou D. Seck
Delft University of Technology
The Netherlands

Andres Sousa-Poza
Engineering Management and
Systems Engineering
Old Dominion University
Norfolk, VA, USA

John F. Sowa
VivoMind Research, LLC
Croton on Hudson, New York
USA

Claudia Szabo
Department of Computer Science
National University of Singapore
Singapore

Andreas Tolk
Engineering Management and
Systems Engineering
Old Dominion University
Norfolk, VA, USA

Philip Valencia
CSIRO ICT Centre
Brisbane, QLD
Australia

Maria Vargas-Vera
Computing Department
Open University
Milton Keynes, MK7 6AA
England, UK

Alexander Verbraeck
Delft University of Technology
The Netherlands

Gabriel A. Wainer
Dept. of Systems and Computer
Engineering Carleton University
Ottawa, ON. K1S 5B6
Canada

X. Rosalind Wang
CSIRO ICT Centre
Marsfield, NSW
Australia

Levent Yilmaz
Department of Computer Science and
Software Engineering
Auburn University
Auburn, AL, USA

Resumes of Contributing Authors

Kevin MacG. Adams is a Principal Research Scientist at the National Centers for
System of Systems Engineering (NCSoSE) of Old Dominion University in Norfolk,
Virginia. He holds a Ph.D. in systems engineering from Old Dominion University,
dual Master’s degrees in Materials Engineering and Naval Architecture and Marine
Engineering from the Massachusetts Institute of Technology, and a Bachelor’s degree
in Ceramic Engineering from Rutgers University. His research focuses on system of
systems engineering, systems engineering methodologies, software engineering
project management frameworks, the philosophy of science, and the use of enterprise
architectures. He is a retired Navy submarine engineering duty officer, a senior
member of the Institute of Electrical and Electronics Engineers (IEEE), a member of
the American Association of University Professors, and the United States Naval
Institute.

Khaldoon Al-Zoubi is a Ph.D. student in Electrical Engineering within the Department
of Systems and Computer Engineering, Carleton University, Ottawa, Canada. He is also
a senior software analyst and programmer with over 13 years of industry experience
occupying a number of seniority and leadership positions. His industry experience
spreads over wide range of areas such as embedded software and mobility, air-traffic
software management and telecommunications, and security software for explosive and
narcotics detections.

Ian Bailey founded Model Futures in 2004 to provide software, consultancy and
training in information management. He specializes in enterprise architecture and
ontology. He was the technical lead in the development of the UK MOD Architecture
Framework (MODAF) and co-developed the SOA views for the NATO Architecture
Framework. He is the lead modeler in the multi-nation IDEAS ontology project,
which targets to become a common foundation ontology for defense enterprise
architecture. Previous to working with MODAF, Ian was editor of the ISO10303-233
systems engineering standard. Most of his professional life prior to Model Futures
was spent integrating and re-engineering large scale information systems for
customers such as Amec, BAE Systems, BP, Shell and Volvo. He has a Ph.D. in data
mapping and a first degree in mechanical engineering. He is a fellow of the Institute
of Engineering and Technology (IET).

Zuhair Bandar is a Reader in Intelligent Systems at MMU. He received his Ph.D. in
AI and Neural Networks from Brunel University, his M.Sc. in Electronics from the
University of Kent and his B.Sc. in Electrical Engineering from Mosul University. He
is a co-founder of the ISG and his research interests include the application of AI to

XVIII Resumes of Contributing Authors

psychological profiling. He is the Technical Director of Convagent Ltd, an MMU
spinout company which provides business rule automation with natural language
interfaces using conversational agents.

Yolanda Blanco-Fernández was born in Orense, Spain in 1980. She received the
Telecommunications Engineering Degree from the University of Vigo in 2003, and
the Ph.D. degree in Computer Science from the same University in 2007. Nowadays,
she is an assistant professor in the Department of Telematics Engineering, teaching in
courses related to network management systems, multimedia services and operating
systems. Her main research activity involves development of personalization services
for Interactive Digital TV and e-commerce, by applying technological foundations
borrowed form the Semantic Web, Web 2.0 and cloud computing.

Keeley Crockett is a Senior Lecturer at MMU. She received her Ph.D. in Machine
Learning from MMU and her B.Sc. in Computation from the University of
Manchester Institute of Science and Technology. She is a committee member of the
IEEE Women into Computational Intelligence Society and a full member of the IEEE
Computational Intelligence Society. Her main research interests include fuzzy
decision trees, applications of fuzzy theory, and data mining. She is a knowledge
engineer and founding member of Convagent Ltd.

Saikou Y. Diallo is a Research Assistant Professor with the Virginia Modeling,
Analysis and Simulation Center (VMASC) at Old Dominion University, Suffolk, VA.
He received his B.Sc. in Computer Engineering and his M.S. and Ph.D. in Modeling
and Simulation from Old Dominion University. He is author of several awarded
articles on interoperability and composability. His research focus is on the theory of
interoperability.

Michelle Fumarola is a Ph.D. student at the Systems Engineering Group of Delft
University of Technology. His Ph.D. research is focused on developing simulation
games for decision making with a strong visual component.

C. Anthony Hunt is Professor of Bioengineering and Therapeutic Sciences at the
University of California in San Francisco, where he directs the BioSystems Group. He
earned a Ph.D. in pharmaceutical chemistry from the University of Florida and B.Sc.
degrees in both chemistry and applied biology from the Georgia Institute of
Technology. He chairs the BioSystems Group that develops and uses advanced
modeling and simulation methods to achieve deeper insight into the networked
micromechanisms that link molecular level events with higher level phenomena and
operating principles at cell, tissue, organ, and organism levels in the presence and
absence of interventions. He is a member of the Editorial Boards of Simulation,
Transactions of the SCS, the International Journal of Knowledge Discovery in
Bioinformatics, and the Journal of Computational Biology and Bioinformatics
Research. He is a Fellow of the American Association for the Advancement of
Science and the American Association of Pharmaceutical Scientists, a Director of The
McLeod Modeling and Simulation Network, and a member of several professional
scientific and engineering associations.

 Resumes of Contributing Authors XIX

Dietmar Jannach is a full professor at Technische Universität Dortmund, Germany
and the head of the e-Services Research Group. His research interests include
interactive recommender systems and conversational preference elicitation,
engineering of knowledge-based systems and web applications as well as the
application of Artificial Intelligence in industry. He has authored and co-authored
more than 100 scientific papers in these areas and published papers in journals such as
Artificial Intelligence, AI Magazine, IEEE Intelligent Systems and on conferences
such as IJCAI and ECAI.

Raja Jurdak is a Principal Research Scientist at CSIRO ICT Centre. He holds a
Ph.D. in Information and Computer Sciences and an MS in Computer Engineering
from the university of California, Irvine and a BE in Computer and Communications
Engineering from the American University of Beirut. He is an adjunct Associate
Professor at University of Queensland's School of Information Technology and
Electrical Engineering. He is also a member of the IEEE and the IEEE
Communications Society. His current research interests focuses on modeling,
optimization, and real world deployments of energy-efficient and highly responsive
sensor networks. He has over 40 peer-reviewed journal and conference publications,
as well as a book published by Springer titled Wireless Ad Hoc and Sensor Networks:
A Cross-Layer Design Perspective.

Charles B. Keating is a Professor of Engineering Management and Systems
Engineering at Old Dominion University located in Norfolk, Virginia. He also serves
as the Director for the National Centers for System of Systems Engineering
(NCSoSE) where his research is focused on development and testing of theory,
methodologies, and technologies to more effectively deal with complex system
problems. Prior to joining the university, Dr. Keating had over 12 years of experience
in command and technical engineering management positions in the U.S. Army,
Texas Instruments, and Newport News Shipbuilding. Dr. Keating holds a B.Sc. in
Engineering from the United States Military Academy (West Point), an M.A. in
Management from Central Michigan University, and a Ph.D. in Engineering
Management from Old Dominion University. His current research interests include:
System of Systems Engineering, Complex System Problem Domains, and Complex
System Governance.

Martín López-Nores was born in Pontevedra, Spain in 1980. He received the
Telecommunications Engineering Degree from the University of Vigo in 2003, and
the Ph.D. degree in Computer Science from the same University in 2006. Nowadays,
he is an associate professor in the Department of Telematics Engineering, teaching in
courses related to computer networks, operating systems and information services.
Starting from works on applied formal specification techniques, his research interest
have evolved to embrace the design and development of interactive services for a
range of consumer electronics devices, the design and evaluation of communication
protocols and innovative applications for mobile ad-hoc networks, and the
management of health-related data in semantics-based recommender systems and
pervasive computing environments.

XX Resumes of Contributing Authors

Saurabh Mittal is the President and founder of Dunip Technologies, Tempe, AZ,
USA and is also a Research Scientist at US Air Force Research Lab (AFRL), 711th
Human Performance Wing, for L-3 Communications, Link Simulation and Training
Branch in Mesa, AZ. His work at AFRL involves multiformalisms, cognitive
modeling and net-centric systems engineering. He holds a Ph.D. (2007) and an M.S.
(2003), both in Electrical and Computer Engineering from the University of Arizona,
Tucson. He was recognized with Golden Eagle Award, highest recognition to any
civilian by Joint Interoperability Test Command and US Air Force, supporting the US
Warfighter for his work on Generic Network System Capable of Planned Expansion
(GENETSCOPE) in 2006. His research focuses on Discrete Event modeling using
DEVS Formalism, net-centric system of systems engineering with DEVS Unified
Process, executable architectures using Department of Defense Architecture
Framework (DoDAF), simulation-based computing and large scale M&S
infrastructures using Service oriented architecture. He is a member of Institute of
Electrical and Electronics Engineers (IEEE), Association of Computer Machinery
(ACM), and Society for Modeling and Simulation International (SCS).

Miklos Nagy is a Ph.D. candidate at the Open University’s Knowledge Media
Institute. His research interests are Uncertain Reasoning, Ontology Mapping, Multi-
agent systems and information integration using Semantic Web technologies. His
current research focuses on the development of intelligent multi-agent systems that
can exploit the emerging Semantic Web’s large-scale data. Miklos Nagy received his
MSc in Information Engineering from the University of Miskolc, Hungary.

Oliver Obst is Research Scientist at the Adaptive Systems Team at the Australian
Commonwealth Scientific and Research Organization (CSIRO) in Sydney. He holds a
Ph.D. and a M.Sc. in computer science, both from the University of Koblenz-Landau
in Koblenz, Germany. He is affiliated as an honorary associate with the School of
Information Technologies of the University of Sydney. His research fields are
information processing in neural networks, the application of information-theory to
guide self-organization in complex systems, the representation of sensory
information, as well as the emergence of coding for both technical and biological
systems. His work involves development of new machine learning algorithms and
architectures, as well as their applications to real world problems, for example in fault
detection in distributed systems, such as smart electrical grids or sensor networks. He
is a member of the International Neural Network Society (INNS), and the German
Informatics Association (GI e.V.).

James O’Shea is a senior lecturer at Manchester Metropolitan University (MMU).
He received his B.Sc. in Chemistry from Imperial College. He worked in computer
R&D at International Computers and as an independent consultant under the UK
Microelectronics Applications Project until 1985. After joining MMU, he developed a
research interest in AI and co-founded the Intelligent Systems Group (ISG). In
addition to his work in the field of CAs, he is one of the inventors of the Silent Talker
lie detector, which has attracted worldwide interest.

Jose J. Padilla is a Post Doctoral Research Associate with the Virginia Modeling,
Analysis and Simulation Center (VMASC) at Old Dominion University, Suffolk, VA.

 Resumes of Contributing Authors XXI

He received his Ph.D. in Engineering Management from Old Dominion University.
He also holds a B.Sc. in Industrial Engineering from the Universidad Nacional de
Colombia, Medellín, and an M.B.A. International Business from Lynn University,
Boca Raton, Florida. His research interests are on the nature of the process of
understanding and how it contributes to the perception of complexity for a human or a
computer agent.

José J. Pazos-Arias is Full Professor at Department of Telematics Engineering at the
University of Vigo (Spain). He received his degree in Telecommunications
Engineering from the Technical University of Madrid (Spain-UPM) in 1987, and his
Ph.D. degree in Computer Science from the Department of Telematic Systems
Engineering at the same University in 1995. He is the director of the Interactive
Digital TV Laboratory, which is currently involved with national and international
projects, receiving funds from both public institutions and industry. With the aim of
combining the power of semantic reasoning technologies and the participation
phenomena arising in the knowledge society, he is currently involved in the use of
social-semantic technologies to assist the users when it comes to facing complex
decision takings in the cloud. In this regard, he is highly interested in gaining deeper
knowledge in social network analysis and emergent semantics.

Mamadou D. Seck received his Ph.D. degree from the Paul Cezanne University of
Marseille and his MS and M.Eng Degrees from Polytech’ Marseille, France. He is
currently an Assistant Professor in the Systems Engineering section at the
Technology, Policy, and Management department of Delft University of Technology.
His research interests include modeling and simulation formalisms, dynamic data
driven simulation, human behavior representation and social simulation, and agent
directed simulation.

Andres Sousa-Poza is an Associate Professor of Engineering Management and
Systems Engineering at Old Dominion University. He holds a B.Sc. in Mechanical
Engineering from the University of Cape Town, South Africa, and M.S. and Ph.D.
degrees in Engineering Management from the University of Missouri-Rolla, USA. He
is the co-founder and present chair of the Management and Engineering in Complex
Situations Forum (MECS Forum). He is affiliated with the National Centers for
System of Systems Engineering (NCSoSE) as a senior researcher.

John F. Sowa spent thirty years working on research and development projects at
IBM and is a cofounder of VivoMind Research, LLC. He has a B.Sc. in mathematics
from MIT, an MA in applied mathematics from Harvard, and a Ph.D. in computer
science from the Vrije Universiteit, Brussel. He is a fellow of the American
Association for Artificial Intelligence. With his colleagues at VivoMind, he has been
developing novel methods for using logic and ontology in systems for reasoning and
language understanding. He designed the language of conceptual graphs, which has
been adopted as one of the three normative dialects of the ISO/IEC standard for
Common Logic.

Claudia Szabo is a Research Assistant at the Department of Computer Science,
National University of Singapore. She received her B.Sc. from the "Politehnica"
University of Bucharest and is a Ph.D. candidate in Modeling and Simulation at the

XXII Resumes of Contributing Authors

National University of Singapore. Her research evaluates simulation composability
and interoperability, with a focus on formal validation. A unique aspect of her work is
to enable trade-off analysis between validation accuracy and computational cost. She
is the author of several awarded articles of composability and validation, including the
2009 ACM SIGSIM Best Ph.D. Student Paper Award.

Andreas Tolk is Associate Professor for Engineering Management and Systems
Engineering at Old Dominion University in Norfolk, Virginia. He holds a Ph.D. and
an M.S. in computer science, both from the University of the Federal Armed Forces
of Germany in Munich. He is affiliated as a Senior Research Scientist with the
National Centers for System of Systems Engineering (NCSoSE) in Norfolk, Virginia,
and the Virginia Modeling Analysis and Simulation Center (VMASC) in Suffolk,
Virginia. His research focuses on integratability and composability of model-based
solutions and modeling and simulation based systems engineering. He is member of
the American Society for Engineering Management (ASEM), Association for
Computing Machinery (ACM), Institute of Electrical and Electronics Engineers
(IEEE), Military Operational Research Society (MORS), National Defense Industrial
Association (NDIA), Simulation Interoperability Standards Organization (SISO), and
Society for Modeling and Simulation International (SCS). He was recognized with the
Excellence in Research Award of the Frank Batten College of Engineering and
Technology and received the first Technical Merit Award of SISO.

Philip Valencia is a Research Engineer at the Autonomous Systems Laboratory
within the Commonwealth Scientific and Research Organization (CSIRO) ICT
Centre. He holds bachelor degrees in Engineering (Electronic) and IT from the
Queensland University of Technology, Brisbane, Australia and is undertaking Ph.D.
studies at the University of Queensland. He has eight years research experience with
wireless sensor network technologies as well as background in machine learning
which he has brought together to research distributed online learning for wireless
sensor and actuation networks.

Maria Vargas-Vera is a Lecturer in Computing at the Open University, England UK.
She received her Ph.D. from the Artificial Intelligence Department at Edinburgh
University and her MSc in Computer Science from the National University of Mexico
(UNAM). She was awarded Fellow of the British Computer Society (FBCS) from
November 2009. Her current research focuses on Automatic Construction of
Ontologies from Text, Ontology Mapping and E-Learning Applications using
Semantic Web Technologies. Maria Vargas-Vera has published many research papers
in prestigious journals and international conferences and she is a member of program
committees of international conferences and workshops. Also, she is an Associated
Editor of the International Journal of Knowledge and Learning (IJKL) and the Journal
of Emerging Technologies in Web Intelligence (JETWI).

Alexander Verbraeck got his M.Sc. in mathematics in 1987 and his Ph.D. in 1991
from Delft University of Technology in the Netherlands. Until 1992 he also had his
own software company, focusing on consultancy and software development for
educational institutes. He worked as assistant professor in information systems until
1995, when he was appointed associate professor in the systems engineering group of

 Resumes of Contributing Authors XXIII

the faculty of Technology, Policy and Management (TPM) of TU Delft. He is the
chair of the Systems Engineering research group and he has been department chair of
the Department of Information, Communication and Systems of the TPM Faculty of
TU Delft. He was the original author and program manager of the BETADE strategic
research program of TU Delft. He has also been appointed part-time research
professor at the R.H. Smith School of Business of the University of Maryland, USA.

Gabriel Wainer is Associate Professor at the Department of Systems and Computer
Engineering of Carleton University, Ottawa, ON, Canada. He is head of the Advanced
Real-Time Simulation lab, located at Carleton University's Centre for advanced
Simulation and Visualization. He received the M.Sc. (1993) and Ph.D. (1998) in
Computer Science from the Universidad de Buenos Aires, Argentina, and IUSPIM
(now Polytech de Marseille), Université Paul Cézanne, Aix-Marseille III, France.
Previously, he was Assistant Professor in the Computer Sciences Department of the
Universidad de Buenos Aires, and held visiting positions in numerous places,
including the Arizona Center of Integrated Modeling and Simulation (ACIMS,
University of Arizona), Laboratory of Systems Sciences of Marseille (LSIS-CNRS),
University of Nice, Polytech de Marseille, INRIA Sophia-Antipolis (France). He is
the Vice-President Publications, and was a member of the Board of Directors of the
Society for Computer Simulation International (SCS). He is the author of three books
and over 200 articles in different venues. He has collaborated in the organization of
over 100 conferences and is co-founder of the SIMUTools Conferences. He has been
the recipient of various awards, including the IBM Eclipse Innovation Award, a
Leadership award by SCS, and various Best Paper awards. He has been awarded
Carleton University's Research Achievement Award and the First Bernard P. Zeigler
DEVS Modeling and Simulation Award.

Rosalind Wang is currently a research scientist in the ICT Centre, CSIRO. She
received her Ph.D. in Mechatronics Engineering from the University of Sydney,
Australia in 2009. Her research interests are machine learning, graphical models, and
pattern recognition.

Levent Yilmaz is Associate Professor of Computer Science and Software
Engineering and holds a joint appointment with the Industrial and Systems
Engineering department at Auburn University. He received his B.Sc. degree in
Computer Engineering and Information Sciences from Bilkent University and M.S.
and Ph.D.. degrees in Computer Science from Virginia Tech. His research interests
are in Modeling & Simulation, Agent-directed Simulation, and Complex Adaptive
Systems, focusing in theory and methodology of modeling and simulation to advance
scientific discovery and theory formation, and to develop robust decision support
systems and models of socio-technical, cognitive, and cultural systems, such as
science of science and innovation policy. He is a member of the Board of Directors of
SCS and is the Editor-in-Chief of Simulation: Transactions of the Society for
Modeling and Simulation International. He is member of ACM, IEEE Computer
Society, Society for Computer Simulation International (SCS), and Upsilon Pi
Epsilon.

A. Tolk and L.C. Jain (Eds.): Intelligence-Based Systems Engineering, ISRL 10, pp. 1–22.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Chapter 1
Towards Intelligence-Based Systems Engineering and

System of Systems Engineering

Andreas Tolk, Kevin MacG. Adams, and Charles B. Keating

Department of Engineering Management and Systems Engineering
National Centers of System of Systems Engineering

Old Dominion University
Norfolk, Virginia 23508-2563, USA

atolk@odu.edu, kmadams@odu.edu, ckeating@odu.edu

Abstract. This introductory chapter defines intelligence-based systems with
focus on semantic systems, simulation systems, and intelligent agents. Semantic
systems define the foundation to communicate systems engineering challenges
using logic, simulation systems introduce the dynamic component, and intelli-
gent agents can introduce alternatives roles. It then gives an overview of tradi-
tional systems engineering as well as system of systems engineering showing
the need to emphasize the system of systems perspective in modern engineering
approaches. Finally, both views are aligned, providing a scope for intelligence-
based systems engineering and the contributions of the following book chapters
are summarized in relationship to this scope.

Keywords: intelligent agents, ontology, semantic system, simulation system,
system of systems engineering, systems engineering.

1 Introduction

The definition of insanity as “doing the same thing over and over again and expecting
different results” is attributed to Albert Einstein. In contrast, a collective definition for
intelligence is the ability to comprehend, to understand and profit from experience, or
to make sense out of the environment and react appropriately. In the light of these two
extremes, this introductory chapter defines what intelligence-based systems are, and
what this means for systems engineering and systems of systems engineering.

Starting with a summary of the state of the art, as among others identified by
Buede [1], it can be observed that most of our current systems have been designed
starting with a set of well defined requirements. These requirements are often based
on operational concepts that identify context and external systems and that are used
to derive (a) input and output requirements that identify what a system shall accept
and produce, (b) system-wide and technology requirements that are building a set of
operational constraints, (c) trade-off requirements that allow optimizing system de-
sign decisions within these constraints, and (d) qualification requirements that allow
validation and verification to be conducted. These requirements lead to building a
functional architecture describing the capabilities of the system, a physical architec-
ture that describes the resources that comprise the system, and finally an allocated

2 A. Tolk, K.M. Adams, and C.B. Keating

architecture that merges the functional and the physical view, including interface
design, integration and qualification. The result is a well-defined system that has a
well defined behavior for all identified input constellation in the form of expected
output produced. As a rule, the capabilities defined in the functional architecture
are fixed. The system will do the same thing over and over again. Under many cir-
cumstances, this is exactly what we would want. Nobody wants to push down the brake
pedal of a car expecting anything else but that the car stops. We expect the same
results. However, what if the environment changes? What if the world in which a
system was originally defined no longer exists?, like we currently see it in so many
military systems that were defined at the time of the Cold War, but still have to be
used today? Simply expecting the system to change its behavior qualifies as insanity,
so we need intelligent systems that are able to comprehend, understand and profit
from experience.

The next section will define intelligence-based systems. Following these defini-
tions and examples, the third section will evaluate the relation of such systems with
systems engineering. The fourth section will do the same for the new and emerging
field of system of systems engineering that adds at least one additional layer of com-
plexity to the challenges to be addressed. Finally, the last section will describe the
contributions comprised in this book in the light of these findings.

2 Intelligence-Based Systems

Intelligence-based systems should not be confused with the often narrowly used term
intelligence system, which refer to a variety of Artificial Intelligence (AI) methods,
such as neural networks, evolutionary algorithms, expert systems, diagnostic systems,
symbolic AI, and other related topical areas. These systems are limited to AI applica-
tions, and intelligent systems engineering describes the engineering of such intelligent
systems, not the use of intelligence to support systems engineering. The scope we take
in this chapter – and in this book in general – includes the design and engineering of
such intelligent systems, but is not limited to this view. We are interested in merging
the state of the art of intelligence as it can be provided via AI methods to support
systems engineering and system of systems engineering. How can these three aspects
be of mutual support, resulting in better systems that are able to comprehend, under-
stand and profit from experience. This is the objective of intelligence-based systems
engineering: to base systems and their design on AI methods to build better systems.

2.1 Characteristics of Intelligence-Based Systems

In order to support this objective of intelligence-based systems engineering, it is first
important to better understand the characteristic properties of intelligence-based sys-
tems. The following list is neither complete nor exclusive, but it reflects the collective
definition of various views on AI, intelligence-based solutions, model-based predic-
tion and control, and similar contributions. Figure 1 depicts these characteristics that
are used in the collective definition, which are self-explaining, robust, fault tolerant,
adaptive, self-optimizing, deductive, learning, cooperative, autonomous, and agile. As

Towards Intelligence-Based Systems Engineering and System of Systems Engineering 3

we will see, these terms have partly overlapping definitions and have to be understood
in the context of the collective definition, which means that not all definitions use all
terms.

Fig. 1. Characteristic Properties of Intelligence-based Systems

Self-explaining doesn’t mean that the system is obvious without any explanation
necessary, but that the system can explain how it came to a certain decision. In tradi-
tional systems, the system behavior does not change. If a system is able to modify its
behavior, it is often needed to understand how and why a decision has been made by
the system. The explanation component of expert systems used for diagnosis, which
traditionally could be generated by tracing the line of reasoning used by the underly-
ing inference engine to answer the questions: “Why is your answer to the question the
one you recommend?” For systems that are able to modify themselves being able to
explain their reason is mandatory to ensure credibility.

Robust as a characteristic property of a system means that the system behaves well
and adequate not only under ordinary conditions, but also under unusual conditions
that stress the original requirements and derived assumptions. In other words, robust
systems do not break easily, but are able to continue to behave well even under vari-
ant circumstances that could lead to failure of system.

Fault tolerant systems behave well and continue to adequately perform even if one
or more of its internal system components fail or break. It may be important to differ-
entiate between a fault, which is a defect in the system that can cause an error, which
is a subset of the system status that may lead to system failure, which is a deviation in
actual system behavior and its desired behavior according to the requirements.

Adaptive systems in general react to changes, in particular to changes in the envi-
ronment or the context of the system. Whenever the environment or context of the

4 A. Tolk, K.M. Adams, and C.B. Keating

system changes the system itself changes as well in order to accommodate these
changes. As a consequence, adaptive systems behave well and adequate even in
changing environments.

Self-organizing systems organize their internal components and capabilities in new
structures without a central or an external authority in place. These new structures can
be temporal and spatial. In some cases, instead of self-organizing the term self-
optimizing is used synonymously, although not all self-organizing structures represent
the optimal structure, but the assumption is that self-organizing systems are organiz-
ing themselves to become better.

Deductive systems are well known from mathematics: based on a set of axioms and
rules, they can deduct new insights by applying the rules to the axioms as well as to
the resulting new facts. This is done using an underlying inference engine. Applying
these ideas, deductive systems can discover new facts that they can use for their deci-
sion process on how to modify themselves to behave well and adequate.

Learning systems generally observe the achieved results and compare them with
the desired outcome. Using methods such as reinforcement learning, decisions that led
to positive results are enforced while those with negative results are avoided. Learn-
ing can also occur by observing other systems and the results of their activities. In
every case, learning is connected with the observation of cause and effects.

Cooperative systems expose social capabilities. This means that cooperative sys-
tems interact with other systems – and potentially humans as well – via some kind of
communication language. This interaction is not limited to pure observation, but such
a system can exchange plans, distribute tasks, etc. Whiteboard technologies are as often
used as direct communication. An interesting side effect is that such cooperative sys-
tems can themselves then become a self-organizing system of systems.

An autonomous system performs the desired tasks and behaves well and adequate
even in unstructured environments without continuous human guidance. In the do-
main of robotics, autonomy is described as a collection of additional characteristics,
in particular sensor capabilities to observe chaotic, unpredicted variables and to react
to keep the system on track utilizing the available degrees of freedom.

In general, agile systems are able to manage and apply knowledge effectively so
that they behave well and adequate in continuously changing and unpredicted envi-
ronments. In systems engineering, agility is often in particular connected with the
development phase of systems and reflects the ability to immediately react on changes
in the requirements.

Without doubt, additional characteristic properties can be identified that are desir-
able for such systems, such as self-healing. However, if a system is adaptive, elf-
optimizing, and fault-tolerant, self-healing is a result. Similar arguments can be made
for the quest to reduce risk and vulnerability and other desirable characteristics.

2.2 How to Capture Intelligence

There are many methods applied in AI to capture intelligence. This chapter deliberately
focuses on a limited subset that is of particular interest to systems engineering and for
which examples are given in other chapters of this books. Using the well known cate-
gories of Ackoff [2], we distinguish between data, information, knowledge, under-
standing, and wisdom. We understand data as a collection of facts. Information is data

Towards Intelligence-Based Systems Engineering and System of Systems Engineering 5

in a context allowing answering questions like who, what, where, and when. Knowl-
edge is applied information answering the question how. Understanding introduces an
answer to the question why, and wisdom finally evaluates understanding and general-
izes the findings, allowing application of understanding in other domains than the
original source of gaining understanding.

In this chapter and this book, we apply semantic systems or use general ontological
means to capture and model data and information. Applying these pieces of informa-
tion on who, what, where, and when in the context of simulation introduces the as-
pects addressed by knowledge: how. Adding agents allows running not only one but
many simulations and comparing alternative courses of action. To communicate be-
tween agents, ontology is needed to provide the basis for the communication language
supporting the exchange of information. Figure 2 shows the three elements applied in
this book.

Fig. 2. Components to Capture Intelligence

A recent book edited by Yilmaz and Ören [3] copes with the various aspects of
agent-directed simulation and systems engineering. They also show the increasing
importance modeling and simulation methods in general and agent-directed simula-
tions in particular play for intelligence-based systems. Software agents expose many
of the characteristic properties described earlier in this chapter.

Agents help designing communication and coordination protocols in the system
and may even become a surrogate for a human user. Simulation helps answering
questions about the achieved behavior, performance and robustness, giving first feed-
back about the quality of the design. In addition, simulation can be used for decision
support by providing “what if” scenarios as well as for training and education pur-
poses. In addition, agents are likely to replace, to a certain degree, objects that have
traditionally been exploited in systems engineering. An interesting aspect evaluated is
to replace the functions traditionally developed within the functional architecture of a

6 A. Tolk, K.M. Adams, and C.B. Keating

system as defined in [1] with agents. As this agent already possesses many character-
istics of intelligence-based systems, the result is likely to be close to our objective.
However, all three aspects shown in figure 2 are important.

Another example of interest described in [3] is autonomic computing, as it also
shares many characteristic properties. Autonomic computing is a potential strategy
and philosophy in systems design and management that aims to cope with increasing
complexity in the presence of constant change addressing the area of systems of sys-
tems engineering which involves: (a) large scope and great complexity of integration
efforts; (b) collaborative and dynamic engineering; (c) engineering under the condi-
tion of uncertainty; (d) continuing architectural reconfiguration; (e) simultaneous
modeling and simulation of emergent behavior; and (f) stakeholders with competing
goals and objectives.

Utilizing the characteristics of software agents, autonomic systems are based on ar-
chitectures and mechanisms that facilitate self-configuration and adaptation through
learning, anticipation, and robust designs to be able to adjust and fine tune system
parameters to emerging situations in this environment. The main characteristics are
self-configuration, self-healing, and self-optimization. The autonomic computing
control loop moves from gathering data from resources in the system’s environment
(sensor) to registering to be notified as the sensors observe changes in the environ-
ment (monitor). Next, the status of the environment and operational components’
ability to react to change is perceived, interpreted, and understood (analyze) while
necessary information about the managed resources, data, and policies are being pro-
vided to the system (knowledge). If the analysis and knowledge cannot identify a
proper reaction to unforeseen environmental conditions, the reasoning and planning
components take control to generate a new plan and identify a sequence of actions to
act on the system configurations. Then, those actions are translated into executable
commands (execute). These key tenets of autonomic systems (sensor, monitor, ana-
lyze, knowledge, reason/plan, execute) provide a roadmap for building intelligence-
based systems using all three components mentioned above.

However, the title of this book is not “systems engineering of intelligence-based
systems,” but “intelligence-based systems engineering,” which also includes the ap-
plication of these methods and technologies to improve the traditional systems engi-
neering process and the emerging new field of system of systems engineering. The
next section will describe the principles of systems engineering and identify where
intelligence-based methods can be applied.

3 Systems Engineering

The genesis for systems engineering in particular in the United States has been attrib-
uted to complexity. Early pioneers in the systems engineering field emphasize in-
creasing system complexity as the principal causative factor, although they recognize
that this is far from a complete explanation [4] [5]. To explain this, some historical
background is warranted.

In the late 1930s the fledgling radio, television, and telephone industries in the
United States recognized the need for a systems approach in the development of mod-
ern telecommunications services. The Radio Corporation of America (RCA) and its

Towards Intelligence-Based Systems Engineering and System of Systems Engineering 7

subsidiary, the National Broadcasting Company (NBC) were interested in the expan-
sion of their television broadcast domain. At the same time, the Bell Telephone Com-
pany was interested in the expansion of their long-distance telephone network. Both
companies initiated technical studies aimed at increasing their markets through the
use of new broadband technologies that were beginning to emerge in the early 1940s.
However, these exploratory studies and experimentation were interrupted by the Sec-
ond World War.

During the Second World War, the American military used large numbers of scien-
tists and engineers to help solve complex logistical and strategic bombing problems
related to the war effort. Many of these efforts made significant contributions to the
philosophy and techniques of what was then called Operations Research. At the same
time, the need for many novel types of electronic gear for airborne use gave rise to a
wide variety of component devices, popularly known as black boxes. These were
ingenious devices, but their application in terms of the entire system of which they
were merely parts was a matter of improvisation [4]. Inevitably, many of the engi-
neers and scientists working on these black boxes were required, by necessity, to look
ahead to the ultimate goal – the system. When the war ended a number of corpora-
tions (most notably the RAND Corporation, the Bell Telephone Laboratories and
RCA) hired much of this pool of talented scientists and engineers to provide services
to both the government and the telecommunications industry. These seasoned practi-
tioners were able to capitalize upon the lessons from their war-time experiences in the
development and implementation of the modern telecommunications and electrical
power systems. The telecommunications system development efforts provide for
much of the early literature on systems engineering. Schlager [6], in a nationwide
survey found that the Bell Telephone Laboratories was probably the first organization
to use the term systems engineering. If true, this places the start of what we call sys-
tems engineering, in the early 1940s.

3.1 Traditional Systems Engineering

The emergence of systems engineering in the 1940s was an outgrowth of the need to
deal with large, expensive systems. The early textbooks [5] [7] [8] on systems engi-
neering had an emphasis on topics such as decision making, problem solving, and
analysis of alternatives. The texts relied heavily on the techniques and analytical
methods from Operations Research [9] [10] [11]. A 1957 definition of systems engi-
neering characterizes its early role [12].

“The design of systems in which the output is a set of specifications
suitable for constructing a real system out of hardware.” (p. 1-4)

Over the next 30 years systems engineering assumed responsibility for not only the
technical elements surrounding systems, but the life cycle management responsibili-
ties as well. Systems engineering was, in-part, responsible for the delivery of large
complicated projects of national importance that included the Polaris submarine, and
the Mercury and Gemini space programs. By 1998 the definition of systems engineer-
ing had evolved to [13].

8 A. Tolk, K.M. Adams, and C.B. Keating

“An interdisciplinary collaborative approach to derive, evolve, and
verify a life-cycle balanced system solution which satisfies customer
expectations and meets public acceptability.” (p. 11)

In 30 years, systems engineering had evolved to include life-cycle management
responsibilities, customers, and the public in its definition. Traditional Systems Engi-
neering (TSE) has developed the frameworks and methodologies [13] [14] to success-
fully conceive, design, acquire, and field large multi-purpose systems. Three often
used models developed in support of TSE most readers will recognize are (a) the
waterfall model [15], (b) the Vee-model [16], and (c) the spiral model [17].

The waterfall model is characterized by the sequential evolution of phases in which
as a rule only the two consecutive phases are connected with each other and the feed-
back is seen as the exception, not the rule. It starts with a set of requirements that are
refined for the system and its component, followed by an analysis. The analysis is
followed by the detailed design and the implementation of this design. Once the sys-
tem is implemented, it is tested and afterwards operationally used. Some newer ver-
sions include maintenance and retirement as well. All versions of the waterfall model
have the philosophy in common that if the engineer is doing a good job in all phases,
he can successfully reach the project end. The Vee-model follows a slightly different
philosophy by integrating the user into the engineering process. It starts with user
requirements and ends with user acceptance. The two parts of the Vee are built by the
phases comprised in the decomposition and definition of system components in the
downward steps, and the integration and verification phases building the upward
steps. On all levels, phases of the decomposition and definition are connected to re-
spective integration and verification phases, such as verifying that the correct parts are
built, verifying that configuration items are assembled correctly, verifying that the
system performs as requested, and validating that the system fulfills all requirements.
Overall, the feedback between the different phases and the possibility of corrections
of earlier phases that are not necessarily mistakes of the systems engineer build the
philosophy. The last model, the spiral model, is based on waterfall and Vee model
ideas. It assumes that several iterations through the phases of these models will
be needed resulting in a spiral in which each iteration leads to the next iterations ob-
jectives. Feedback is the rule and no longer the exception. The spiral model is an
iterative model that combines elements of the classic waterfall model with the charac-
teristic of prototyping and produces an evolutionary approach to engineering. The
four major phases are (1) management planning, (2) engineering, (3) customer evalua-
tion, and (4) risk analysis. The major distinguishing feature of the spiral is that by
including a formal risk analysis phases, it introduced a risk-driven approach to the
development process.

Systems Engineering therefore evolved well. However, the 21st century presented a
new problem for systems engineering: the system of systems. The next section will
exemplify that the traditional methods are insufficient to address these new challenges
so that a new theory is needed that allows to derive methods and implement solutions.

3.2 System of Systems

Most 20th century systems were designed and implemented to satisfy specific func-
tional objectives. The objectives were typically focused on the requirements in a single

Towards Intelligence-Based Systems Engineering and System of Systems Engineering 9

functional area (i.e. accounting, inventory control, manufacturing, railroads, highways,
etc.), resulting in a number of vertically independent, or stove-piped, systems within an
organization or society. Few were designed to satisfy all of the functions required by
the organization or society they were serving and as such are classified as monolithic
in structure.

Today, large numbers of 20th century systems operate within these functional
stovepipes, providing functionality inside but not across the stovepipes. Initial efforts
to bridge the functional stovepipes have focused on integrating 20th century systems
through a series of system-to-system interfaces. However, 21st century managers are
no longer satisfied with disparate systems lashed together with complex interfaces and
data validation routines. Enterprise Resource Planning (ERP) systems were supposed
to be the panacea for the business world, replacing stove-piped legacy systems with a
single system encompassing all of a company’s functional requirements. In 1998 it
was estimated that businesses around the world were spending $10 billion per year
[18] on enterprise systems and that figure probably doubles when you add in associ-
ated consulting expenses.

By the turn of the century, a new type of system, beyond that envisioned by the late
Russell Ackoff in his paper The Systems Revolution [19], began to emerge. It is the
super-system, the metasystem, the system-of-systems which is made up of compo-
nents which are large-scale systems themselves. If we are to understand system-of-
systems we must be able to differentiate them from the more common monolithic
systems.

Although the term system-of-systems has no widely accepted definition, Maier
notes that the notion is widespread and generally recognized [20]. The following
distinguishing characteristics have been proposed [20] [21].

1. Operational Independence of the Individual Systems: A system-of-systems is
composed of systems that are independent and useful in their own right. If a system-
of-systems is disassembled into the component systems, these component systems are
capable of independently performing useful operations independently of one another.

2. Managerial Independence of the Systems: The component systems not only can
operate independently, they generally do operate independently to achieve an in-
tended purpose. The component systems are generally individually acquired and inte-
grated and they maintain a continuing operational existence that is independent of the
system of systems.

3. Geographic Distribution: Geographic dispersion of component systems is often
large. Often, these systems can readily exchange only information and knowledge
with one another, and not substantial quantities of physical mass or energy.

4. Emergent Behavior: The system-of-systems performs functions and carries out
purposes that do not reside in any component system. These behaviors are emergent
properties of the entire system-of-systems and not the behavior of any component
system. The principal purposes supporting engineering of these systems are fulfilled
by these emergent behaviors.

5. Evolutionary Development: A system-of-systems is never fully formed or com-
plete. Development of these systems is evolutionary over time and with structure,
function and purpose added, removed, and modified as experience with the system
grows and evolves over time.

10 A. Tolk, K.M. Adams, and C.B. Keating

These distinguishing characteristics begin to place some degree of formality on the
notion of system-of-systems, but something is missing. In order to go beyond the tradi-
tional perspective of a fully integrated system-of-systems which perfectly shares data
in what we call hard interoperability, we must invoke a more systemic view. The ideal
state for a system-of-systems requires what we will call systemic interoperability. Sys-
temic interoperability is a holistic view of interoperability and requires compatibility in
worldview and conceptual, contextual, and cultural interoperability, allowing the sys-
tem-of-systems to act consistently with regard to purpose, function, and form. In other
words, it is not sufficient to align the implementation details of the participating sys-
tems, but the underlying conceptualization and the assumptions and constraints need to
be aligned as well. This is where System of Systems Engineering comes into play.

3.3 System of Systems Engineering

During the evolution of TSE, the educational texts [22] [23] [24] and curricula elimi-
nated topics on the fundamental concepts and properties associated with systems and
include few soft topics to encompass the rich context and human situations that real-
world systems of systems engineering problems present.

Man-made systems of systems require a holistic, systemic understanding of both
the technical problem and the contextual framework present in order to arrive at satis-
factory solutions. A new set of methodologies and frameworks based upon formal
systems principles are required. The new methodologies will also require new sup-
porting methods, techniques, and tools.

The emerging discipline of System of Systems Engineering (SoSE) is attempting to
address the problems associated with systems-of-systems. Because these problems are
messy traditional methodologies of systems engineering are excluded from considera-
tion in this context. Russell Ackoff coined the concept of a “mess” and “messes” [25]:

“Because messes are systems of problems, the sum of the optimal
solutions to each component problem taken separately is not an
optimal solution to the mess. The behavior of the mess depends more
on how the solutions to its parts interact than on how they interact
independently of each other. But the unit in OR is a problem, not a
mess. Managers do not solve problems, they manage messes.” (p.
100)

Keating et al. [26] cite three important problems that TSE is not prepared to address
when facing a complex metasystem problem:

1. Has not been developed to address high levels of ambiguity and uncertainty
in complex systems problems . . . it strains to adequately respond to ill-
structured problems with constantly shifting requirements.

2. Does not completely ignore contextual influences on system problem formu-
lation, analysis, and resolution, but places context in the background.

3. Is not prepared to deliver incomplete or partial solutions that include iterative
design and implementation after deployment.

Towards Intelligence-Based Systems Engineering and System of Systems Engineering 11

Keating et al [26] provisionally define SoSE as:

“The design, deployment, operation, and transformation of
metasystems that must function as an integrated complex system to
produce desirable results. These metasystems are themselves
comprised of multiple autonomous embedded complex systems that
can be diverse in technology, context, operation, geography, and
conceptual frame.” (p. 23)

Multiple, autonomous, embedded, complex systems function as a single meta-system,
or system-of-systems. This is possibly the most daunting task ever presented to sys-
tems engineers. It exists within a unique new context and will require an entirely new
methodological problem solving approach.

From a programmatic and enterprise viewpoint, TSE emphasized a system-centric
view with individually designed, developed, implemented and optimized solutions,
which necessarily incorporated the danger of stovepipes and fragmentation. What is
envisioned, however, is an integrated system approach in which each system provides
capabilities in an easy and composable way to support the rapid reconfiguration. To
support this vision, a methodology is needed that guides systems engineers in the new
system of systems problem domain.

3.4 System of Systems Engineering Methodology

Currently, there is no widely accepted approach to conducting System of Systems
Engineering (SoSE) efforts. However, there is recognition that approaches must
address challenges of increasingly complex systems that must be conceived, built,
operated, and evolved in a changed landscape marked by: (1) an exponential rise in
the demand, accessibility, and proliferation of information, (2) increasing interde-
pendence and demands for interoperability between systems that have previously
been developed, tested, operated, and maintained in isolation, (3) missions and flow
down requirements that are subject to rapid and potentially radical shifts due to pol-
icy, organizational, funding, or other factors beyond the technical aspects of the sys-
tem, and (4) demands for the accelerated fielding of systems that are technically
incomplete, but offer an improved alternative to what is presently available [27].

The SoSE Methodology [28] is a rigorous engineering analysis that invests heavily
in the understanding and framing of the problem under study. By conducting a rigor-
ous engineering analysis of the problem and its associated context, the SoSE Method-
ology minimizes the chance that a Type III error or solving the wrong problem
precisely and efficiently [29] [30] may be committed early on in a SoSE analysis. It is
important that the SoSE Methodology is not taken as a prescriptive approach to ad-
dressing complex SoSE problems. Instead, the SoSE Methodology must be taken as a
guide, to be adapted to the particular circumstances that define its application. Other-
wise, it will not serve its intended purpose: to provide a high level adaptable structure
to guide rigorous exploration of complex systems problem situations.

The SoSE Methodology is intended to provoke rigorous analysis – resulting in the
potential for alternative decision, action, and interpretations for evolving complex
system of systems solutions. The SoSE Methodology is based in facilitating inquiry
that is as much about thinking and framing of problems, their context, and managing
emergent conditions as it is about taking decisive action. The SoSE Methodology was

12 A. Tolk, K.M. Adams, and C.B. Keating

purposefully built and seeks to provoke higher levels of inquiry, systemic analysis,
and advance understanding of seemingly intractable problems enroute to more robust
solutions.

We position the SoSE Methodology to be consistent with Checkland’s [31] per-
spective of a methodology, which suggests that a methodology provides a framework,
more specific than philosophy, but more general than a detailed method or tool.
Therefore, a systems-based methodology must provide a framework that can be
elaborated to effectively guide action. There are several critical attributes for a meth-
odology and these are consistent with the current state of evolution for the SoSE
Methodology. These critical attributes are discussed in the next section.

There are several critical attributes in the SoSE Methodology that are consistent
with the current state of evolution for SoSE. Although the listing is certainly not in-
tended to be exhaustive, we offer these as insight to our thinking with respect to the
characteristics that make the SoSE Methodology sustainable. The nine (9) critical
attributes and how the SoSE Methodology satisfies these are presented in Table 1.

Table 1. Critical Attributes of the SoSE Methodology

Attribute Explanation
Transportable Must be capable of application across a spectrum of complex systems engineering

problems and contexts. The appropriateness (applicability) of the methodology to a
range of circumstances and system problem types must be clearly established as the
central characteristic of transportability.

Theoretically and
Philosophically
Grounded

Must have a linkage to a theoretical body of knowledge as well as philosophical
underpinnings that form the basis for the methodology and its application. The
theoretical body of knowledge for the SoSE Methodology is systems theory.

Guide to Action Must provide sufficient detail to frame appropriate actions and guide direction of
efforts to implement the methodology. While not prescriptively defining how
execution must be accomplished, the methodology must establish the high level
what’s that must be performed.

Significance Must exhibit the holistic capacity to address multiple problem system domains,
minimally including contextual, human, organizational, managerial, policy,
technical, and political aspects of a SOSE problem.

Consistency Must be capable of providing replicability of approach and results interpretation
based on deployment of the methodology in similar contexts. The methodology is
transparent, clearly delineating the details of the approach for design, analysis, and
transformation of the SOS.

Adaptable Must be capable of flexing and modifying the approach, configuration, execution, or
expectations based on changing conditions or circumstances – remaining within the
framework of the guidance provided by the methodology, but adapting as necessary
to facilitate systemic inquiry.

Neutrality Attempts to minimize and account for external influences in application and
interpretation. A methodology must provide sufficient transparency in approach,
execution, and interpretation such that biases, assumptions, and limitations are
capable of being made explicit and challenged within the methodology application.

Multiple Utility Supports a variety of applications with respect to complex SOS, including, new
system design, existing system transformation, and assessment of existing complex
SOS initiatives.

Rigorous Must be capable of withstanding scrutiny with respect to: (1) identified linkage/basis
in a body of theory and knowledge, (2) sufficient depth to demonstrate detailed
grounding in relationship to systemic underpinnings, including the systems
engineering discipline, and (3) capable of providing transparent results that are
replicable with respect to results achieved and accountability for explicit logic used
to draw conclusions/interpretations.

Towards Intelligence-Based Systems Engineering and System of Systems Engineering 13

The foundations of the SoSE Methodology are found in two primary aspects,
namely (a) the theoretical and philosophical foundations for systems and (b) the seven
perspectives of an enabling methodology shown in figure 3.

Perspective I
Framing the System
Under Study

Perspective II
Designing the Unique
Methodology

Perspective IV
SoSE Exploration and Analysis

Perspective III
Designing the SoSE
Team

Perspective VII
Assessing the Impact
of the SoSE Study

Perspective VI
Reporting the Results
of the SoSE Study

Perspective V
Transforming the
Analysis into Action

Foundation
Systems Principles

Fig. 3. The SoSE Methodology

First, the underlying theoretical and philosophical grounding are derived from sys-
tems theory. The principles, laws, and concepts central to the SoSE Methodology are
from systems theory [32]. These principles, laws, and concepts are central to every-
thing that follows in application of the SoSE Methodology to a specific problem do-
main. In effect, they define the thinking that supports following decision, action, and
interpretation essential to effective SoSE. This sets the stage for a consistent approach
to deployment of the SoSE Methodology by participants.

The second aspect of the SoSE Methodology is found in the seven perspectives
that exist throughout a SoSE effort. Each perspective is:

• Essential to a holistic SoSE treatment of a problem area,

• Applied in iterative fashion throughout a SoSE project effort,

• Exists in relationship to all other perspectives, informing and informed by
other perspectives,

• Can have a different priority at different times during an effort,

• Flexible in application, requiring tailoring depending on the context and
problem domain, and

• Consists of detailed elements (that will vary in application) that serve to
structure the application of the perspectives.

14 A. Tolk, K.M. Adams, and C.B. Keating

Each of the seven perspectives is briefly presented in the following paragraphs.

Perspective I: Framing the System under Study. This perspective is designed to rigor-
ously structure the system problem, the contextual setting and environment within
which the problem system exists. Key execution elements in this perspective include:

• Generalize the Wide Context for the System under Study – establish the cir-
cumstances, factors, conditions, and patterns that are characteristic of the
situation surrounding the system of systems (SoS).

• Characterize the System under Study – understand the basic structure and
characteristics of the system of systems under study, including the SoS’s ob-
jectives, functions, environment, resources, components, and management.

• Characterize the Complex Nature of the System Domain under Study –
establish the complex nature of the SoS and problem domain.

• Present the System Domain as Characteristically Complex - present the SoS
under study as a complex systems problem.

• Frame the SoSE Problem - depict the problem situation by expressing the
structure, elements of processes and the situation.

• Define Study Purpose, Reformulated Problem Statements and Objectives -
clearly explain the nature, purpose, high-level approach, and objectives for
the effort.

• Conduct Stakeholder Analysis - explicitly account for and address the multi-
ple interests (rational and irrational, inside & outside) which can impact
achievement of system objectives.

• Conduct Contextual Analysis - account for the set of circumstances, factors,
conditions, values and/or patterns that are influential in constraining and
enabling the SoS engineering process, the SoS solution/recommendation
design, SoS solution/recommendation deployment considerations, and inter-
pretation of outputs/outcomes stemming from the effort.

Perspective II: Designing the Unique Methodology. This perspective designs a unique
methodology based on the problem and the problem context.

• Construct High-Level Design for the Study - construct a unique high-level
methodology that will adequately support the study objectives and the SoS
context. This must be compatible with the problem and problem context.

• Develop the Analytic Strategy - create the design for quantitative and quali-
tative exploration (data collection and analysis) necessary to understand and
make decisions concerning the SoS under study.

• Develop Assessment Criteria and Plan - construct a set of measurable per-
formance criteria that can be used during and after the problem study to en-
sure continued fit of problem, context, methodology and capability to meet
study objectives.

Perspective III: Designing the SoSE Team. This perspective designs the team to
undertake the SoSE study, taking into account the nature of the SoS problem and the
team resources, skills, and knowledge that can be brought to bear for the problem.

