


Lecture Notes in Economics
and Mathematical Systems

Founding Editors:

M. Beckmann
H.P. Künzi

Managing Editors:

Prof. Dr. G. Fandel
Fachbereich Wirtschaftswissenschaften
Fernuniversität Hagen
Feithstr. 140/AVZ II, 58084 Hagen, Germany

Prof. Dr. W. Trockel
Institut für Mathematische Wirtschaftsforschung (IMW)
Universität Bielefeld
Universitätsstr. 25, 33615 Bielefeld, Germany

Editorial Board:

A. Basile, A. Drexl, H. Dawid, K. Inderfurth, W. Kürsten

615



Detlef Repplinger

Pricing of Bond Options

Unspanned Stochastic Volatility 
and Random Field Models



The use of general descriptive names, registered names, trademarks, etc. in this publication does 

protective laws and regulations and therefore free for general use.
not imply, even in the absence of a specific statement, that such names are exempt from the relevant 

Cover design: WMX Design GmbH, Heidelberg

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

Springer-Verlag Berlin Heidelberg© 2008

Lecture Notes in Economics and Mathematical Systems ISSN 0075-8442

Dr. Detlef Repplinger
Man Investments AG
Huobstrasse 3

Switzerland
8808 Pfäffikon SZ

ISBN 978-3-540-70721-9 e-ISBN 978-3-540-70729-5

Library of Congress Control Number: 2008931347

drepplinger@maninvestments.com

DOI 10.1007/978-3-540-70729-5

This work is subject to copyright. All rights are reserved, whether the whole or part of the material 

of this publication or parts thereof is permitted only under the provisions of the German Copyright 
Law of September 9, 1965, in its current version, and permissions for use must always be obtained 
from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law.

is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication



Foreword

There is still a consistency problem if we want to price interest rate deriva-
tives on zero bonds, like caplets or floorlets, and on swaps, like swaptions, at
the same time within one model. The popular market models concentrate ei-
ther on the valuation of caps and floors or on swaptions, respectively. Musiela
and Rutkowski (2005) put it this way: ”We conclude that lognormal market
models of forward LIBORs and forward swap rates are inherently incon-
sistent with each other. A challenging practical question of the choice of a
benchmark model for simultaneous pricing and hedging of LIBOR and swap
derivatives thus arises.”

Repplinger contributes to the research in this area with a new system-
atic approach. He develops a generalized Edgeworth expansion technique,
called Integrated Edgeworth Expansion (IEE), to overcome the aforemen-
tioned consistency problem. Together with a ’state of the art’ Fractional
Fourier Transform technique (FRFT) for the pricing of caps and floors this
method is applied to price swaptions within a set of ’up to date’ multidi-
mensional stochastic interest rate models. Beside the traditional multi-factor
Heath-Jarrow-Morton models, term structure models driven by random fields
and models with unspanned stochastic volatility are successfully covered.
Along the way some new closed form solutions are presented.

I am rather impressed by the results of this thesis and I am sure, that this
monograph will be most useful for researchers and practitioners in the field.

Tübingen, May 2008 Rainer Schöbel
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Chapter 1
Introduction

Before the work of Ho and Lee [39] and Heath, Jarrow and Morton [35] the
point of view in the literature was explaining the term structure of interest
rates or respectively the cross section of bond prices. The new Heath, Jarrow
and Morton (HJM) models perfectly fit to an observed initial term struc-
ture by focussing on the arbitrage-free pricing of related derivatives. Given
a specification of the volatility for the forward rates or bond prices together
with the initial term structure completely determines the risk-neutral bond
price dynamics or equivalently the short rate process (see e.g. de Jong and
Santa Clara [24], Casassus, Collin-Dufresne and Goldstein [14]). The volatil-
ity structure in general can be computed by inverting the option prices similar
to the calculation of implied volatilities that are extracted from stock option
prices. One drawback of these models lies in the non-Markovian structure
of the short rate dynamics resulting in a computationally low tractability.
Hence, most of the HJM-models in the literature are restricted to a deter-
ministic volatility structure leading to a Markovian short rate process. It is
well known that a deterministic volatility function always leads to Gaussian
interest rates and therefore we have to deal with negative interest rates.

Unlike these models the traditional models, such as Cox, Ingersoll, and
Ross [22] and Vasicek [73] are built on state variables starting from a given
short rate process. Hence, they directly causes a Markovian structure. On
the other hand it is well known that they can fit the initial term structure
only by making the model parameters time dependent. In contrary, coming
from the HJM-framework the so called extended form models (e.g. Hull and
White [41]) are a result of the arbitrage-free HJM setting, where the short
rate dynamics are defined endogenously.

Cox, Ingersoll and Ross [22] and Jamshidian [42] demonstrate that closed-
form solutions for zero-coupon bond options can be derived for single-factor
square root and Gaussian models. More generally, Duffie, Pan and Singleton
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2 1 Introduction

[28] demonstrate that the entire class of affine models possesses closed-form
solutions for zero-coupon bond options, which can be derived by applying
standard Fourier inversion techniques. The option pricing formula for zero-
coupon bond options (caplets/floorlets) are discussed e.g. in Chen and Scott
[16], Duffie, Pan and Singleton [28], Bakshi and Madan [6] and Chacko and
Das [15]. Unfortunately, these papers say only little about the pricing of op-
tions on coupon bonds (swaptions).

Given a single-factor Gaussian interest rate model Jamshidian [42] derives
a closed-form solution for the price of an option on coupon bonds. This so-
lution stems from the fact that the optimal exercise decision at maturity is a
one dimensional boundary and a coupon bond can be written as a portfolio of
zero-coupon bonds. Unfortunately, the closed-form solution for options on
coupon bonds and zero-coupon bond options cannot be extended to multi-
factor models. Then the exercise boundary becomes a non-linear function
of the multiple state variables and cannot be computed in closed-form. Lit-
terman and Scheinkman [55] shows that typically multi-factor models are
needed to capture the dynamics of the term structure of interest rates. One
approach to handle the non-linear exercise boundary in a multi-factor setting
is applied by Singleton and Umantsev [68]. They approximate the exercise
boundary with a linear function of the multiple state-variables. On the other
hand, there are two new drawbacks from this approach. Firstly, a separate ap-
proximation has to be performed for every single strike price coming along
with a low efficiency and tractability. Secondly, and even more restrictive
their approach becomes completely intractable for a large number of state
variables. Hence, we need a new method for the computation of bond option
prices in a generalized multi-factor HJM setup.

Miltersen, Sandmann, and Sondermann [60] and Brace, Gatarek, and
Musiela [9] derive the so called LIBOR market model. In their approach the
lognormal distributed interest rates are given and closed-form solutions can
be derived to compute the prices of interest rate caps/floors and swaptions.
Their formulae are very tractable and easy to handle. On the other hand,
there occurs a model inconsistency between the swaption and cap/floor mar-
kets coming from the fact that a lognormal LIBOR rate cannot coexist with
a lognormal distributed swap rate.

We overcome this inconsistency, by deriving a unified framework that di-
rectly leads to consistent cap/floor and swaption prices. Thus, in general we
start from a HJM-like framework. This framework includes the traditional
HJM model as well as an extended approach, where the forward rates are
driven by multiple Random Fields. Furthermore, even in the case of a multi-
factor unspanned stochastic volatility (USV) model we are able to compute
the bond option prices very accurately. First, we make an exponential affine
guess for the solution of an expectation, which is comparable to the solu-



1 Introduction 3

tion of a special characteristic function. Then, given this solution we are able
to compute the prices of zero-coupon bond options by applying standard
Fourier inversion techniques. In limited cases this method can also be ap-
plied for the pricing of coupon bearing bond options (see e.g. Singleton and
Umantsev [68]), but completely fails assuming a multi-factor framework.
In order to overcome this drawback, we use the solution of our exponen-
tial affine guess to compute the moments of the underlying random vari-
able. Given these moments we are then able to compute the prices of coupon
bond options (swaptions) by performing an integrated approach of a gener-
alized Edgeworth Expansion (IEE) technique (see chapter (4)). This is a new
method for the computation of the probability that an option matures in the
money.

In chapter (2), we derive a unified framework for the computation of the
price of an option on a zero-coupon bond and a coupon bond by applying the
well known Fourier inversion scheme. Therefore, we introduce the transform
Θt(z), which later on can be seen as a characteristic function. In case of zero-
coupon bond options we are able to find a closed-form solution for the trans-
form Θt(z) and apply standard Fourier inversion techniques. Unfortunately,
assuming a multi-factor framework there exists no closed-form solution of
the characteristic function Ξt(z) given a coupon bond option. Hence, in this
case Fourier inversion techniques fail.

Chapter (3) focuses on the derivation of a generalized approach of the
Edgeworth Expansion (EE) technique. This approach extends the series ex-
pansion technique of Jarrow and Rudd [44], Turnbull and Wakeman [72],
Collin-Dufresne and Goldstein [19] and Ju [47] to a generalized approxi-
mation scheme for the computation of the exercise probabilities that an op-
tion ends up in the money. The main advantage of this new technique stems
from the fact that the pricing scheme is strictly separated from the underlying
model structure. Thus, the structure of the underlying dynamics enter only
in the computation of the moments. In other words, we derive a generalized
algorithm to approximate the exercise probabilities, by using only the mo-
ments of the underlying random variable, which either can be computed in
closed-form or even numerically1.

In chapter (4), we derive a new integrated version of the generalized EE2.
This integrated version can be applied to compute the exercise probabilities
directly, instead of computing an integration over the approximated pdf3. Fi-
nally, we obtain a series expansion of the exercise probabilities in terms of
Hermite polynomials and cumulants. This approach is a technique to approx-

1 A Matlab program is available in the appendix section (10.4).
2 Therefore, we term this generalized series expansion the Integrated Edgeworth Expansion (IEE).
3 The EE originally is derived to approximate density functions instead of probabilities.



4 1 Introduction

imate the cumulative density function (cdf), even when there exists no solu-
tion for the characteristic function. Hence, the approach is a new generalized
approximation scheme especially adapted for the use in option pricing the-
ory, where we are interested in the computation of the exercise probabilities.
Then, we show that the IEE approach is very accurate for the approximation
of a χ2

v - and the lognormal-cdf. Furthermore, we show that the series expan-
sion of a characteristic function can also be applied for lognormal distributed
random variables. The divergence of the series expansion (Leipnik [53]) can
be avoided by using only the terms up to a critical order Mc for which the se-
ries expansion converges. Thus, we conclude that the application of the new
IEE is admissible for practical use and leads to excellent results for the price
of fixed income derivatives, even if the underlying is lognormaly distributed.

In chapter (5), we start from a traditional Heath, Jarrow and Morton (HJM)
approach and derive the pricing formulae of the aforementioned fixed in-
come derivatives . Given the HJM [35] restrictions for the volatility function
σ(t,T ), implying an arbitrage-free model structure ,we implicitly obtain the
arbitrage-free bond price process or equivalently the corresponding short rate
dynamics. Then, by solving a set of coupled ordinary differential equations
(ODE), we obtain an exponential affine approach to compute the character-
istic function in closed-form. Finally, the well known closed-form solution
for the price of an option on a discount bond can be derived by calculat-
ing the Fourier inversion of the characteristic function. By the use of this
closed-form solution, we introduce the Fractional Fourier Transform (FRFT)
technique. Then the prices of zero-coupon bond options can be computed
very efficiently for a wide range of strike prices by performing this advanced
Fourier inversion method. Unfortunately, this technique cannot be applied
for the computation of options on coupon bonds in a multi-factor framework.
Hence, thereafter we apply the new IEE technique to compute the price of a
coupon bearing bond option in a multi-factor HJM-framework.

In chapter (6), we extend the traditional HJM approach, by assuming that
the sources of uncertainty are driven by Random Fields. For that reason,
we introduce a non-differentiable Random Field (RF) and an equivalent T -
differentiable counterpart. Given the particular Random Field, we derive the
corresponding short rate model and show in contrast to Santa-Clara and Sor-
nette [67] and Goldstein [33] that only a T -differentiable RF leads to admis-
sible well-defined short rate dynamics4. Santa-Clara and Sornette [67] argue
that there is no empirical evidence for a T -differentiable RF. We conclude
that the existence of some pre-defined short rate dynamics enforces the usage
of a T -differentiable RF. Furthermore, we compute bond option prices when

4 In the sense that the derivative of the RF with respect to the term T is defined.
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the term structure is driven by multiple Random Fields5. The higher option
prices for ”out-of-the-money” options resulting from the RF term structure
models could help to explain the implied volatility skew observed e.g. by
Casassus, Collin-Dufresne, and Goldstein [14] and Li and Zhao [54].

Finally, we introduce a term structure model with unspanned stochastic
volatility (USV) in chapter (7). Collin-Dufresne and Goldstein [18], Heid-
dari and Wu [36], and in more recent work Jarrow, Li, and Zhao [45] and
Li, Zhao [54] show that the prices of swaptions and caps/floors appear to
be driven by risk factors that do not effect the term structure. Hence, in-
terest rate option markets exhibit risk factors unspanned by the underlying
yield curve of interest rates. This directly implies that bond options cannot
be replicated and hedged perfectly by trading solely bonds. As a result the
bond markets do not span the fixed income derivative markets and these mar-
kets becomes incomplete. We introduce a general multi-factor HJM- frame-
work with USV combined with correlated sources of uncertainty6. Then,
by applying the FRFT- or IEE-technique, together with our new solution
for correlated sources of uncertainty, we are able to compute the prices of
bond prices very efficiently and accurately. Note that our approach remains
tractable and accurate, even in the case of a multi-factor framework com-
bined with USV. The higher prices we obtain for ”out-of-the-money” options
indicate that a dependency structure between the forward rate dynamics and
the stochastic volatility process could help to explain the implied volatility
smile observed in the LIBOR-based fixed income derivative markets (see e.g.
Casassus, Collin-Dufresne, and Goldstein [14] and Li and Zhao [54]).

In chapter (8) we review and conclude our results and give ideas for fur-
ther extensions of this work.

5 An example of a two-factor RF model could e.g. be enforced by a separate modeling of bond
prices for corporate bonds and default spreads.
6 Han 2007 [34] showed in an empirical analysis assuming a similar model, but excluding a poten-
tial correlation between the forward rate process and the subordinated stochastic volatility process,
that the average relative pricing error between the cap markets and the no-arbitrage values implied
by the swaption markets are in the range of the bid-ask spread. Nevertheless, the average absolute
relative pricing error can even exceed 6% in his study.



Chapter 2
The option pricing framework

The option markets based on swap rates or the LIBOR have become the
largest fixed income markets, and caps (floors) and swaptions are the most
important derivatives within these markets. Thereby, a cap (floor) can be
interpreted as a portfolio of options on zero bonds. Hence, pricing a cap
(floor) is very easy, if we have found an exact solution for the arbitrage-free
price of a caplet (floorlet) (see e.g. Briys, Crouhy and Schöbel [11]. On the
other hand, a swaption may be interpreted as an option on a portfolio of zero
bonds1. Therefore, even in the simplest case of lognormal-distributed bond
prices, the portfolio of the bonds would be described by the distribution of
a sum of lognormal-distributed random variables. Unfortunately, there exists
no analytic density function for such a sum of lognormal-distributed ran-
dom variables. Hence, using a multi-factor model with Brownian motions or
Random Fields2 as the sources of uncertainty, it seems unlikely that exact
closed-form solutions can be found for the pricing of swaptions. The char-
acteristic function of the random variable X̄(T0,{Ti}) = log∑u

i=1 ciP(T0,Ti)
with the coupon payments ci at the fixed dates Ti ∈ {T1,...,Tu} cannot be
computed in closed-form. Otherwise, we are able to find a closed-form so-
lution for the moments of the underlying random variable V (T0,{Ti}) =
∑u

i=1 ciP(T0,Ti) at the exercise date T0 of the swaption. Hence, using the an-
alytic solution of the moments within our Integrated Edgeworth Expansion
(IEE) enables us to compute the Ti-forward measure exercise probabilities
Π Ti

t [K] = ETi
t
[
1V (T0,{Ti})>K

]
(section (5.3.3 )). Reasonable carefulness has to

be paid for the fact that the characteristic function of a lognormal-distributed

1 The owner of a swaption with strike price K maturing at time T0, has the right to enter at time
T0 the underlying forward swap settled in arreas. A swaption may also be seen as an option on a
coupon bearing bond (see e.g. Musiela and Rutkowski [61]).
2 Eberlein and Kluge [29] find a closed-form solution for swaptions using a Lévy term structure
model. A solution for bond options assuming a one-factor model has been derived by Jamishidian
[42].

7



8 2 The option pricing framework

random variable cannot be approximated asymptotically by an infinite Taylor
series expansion of the moments (Leipnik [53]). As a result of the Leipnik-
effect we truncate the Taylor series before the expansion of the characteristic
function tends to diverge.

In contrary to the computation of options on coupon bearing bonds via
an IEE, we can apply standard Fourier inversion techniques for the deriva-
tion zero bond option prices. Applying e.g. the Fractional Fourier Transform
(FRFT) technique of Bailey and Swarztrauber [4] is a very efficient method
to compute option prices for a wide range of strike prices. This can either be
done, by directly computing the option price via an Fourier inversion of the
transformed payoff function or by separately computing the exercise prob-
abilities Π Ti

t [k]. Running the first approach has the advantage that we only
have to compute one integral for the computation of the option prices. On
the other hand, sometimes we are additionally interested in the computation
of single exercise probabilities3. Therefore, we prefer the latter as the option
price can be easily computed by summing over the single probabilities4.

2.1 Zero-coupon bond options

In the following, we derive a theoretical pricing framework for the compu-
tation of options on bond applying standard Fourier inversion techniques.
Starting with a plain vanilla European option on a zero-coupon bond with
the strike price K, maturity T1 of the underlying bond and exercise date T0 of
the option, we have

ZBOw(t,T0,T1) = wEQ
t

[
e−
∫ T0

t r(s)ds (P(T0,T1)−K)1wX(T0,T1)>wk

]
(2.1)

= wEQ
t

[
e−
∫ T0

t r(s)ds+X(T0,T1)1wX(T0,T1)>wk

]
−wKEQ

t

[
e−
∫ T0

t r(s)ds1wX(T0,T1)>wk

]
,

with w = 1 for a European call option and w = −1 for a European put op-
tion5. We define the probability Π Q

t,a [k] given by

3 Note that the FRFT approach is very efficient. Hence, the computation of single exercise prob-
abilities runs nearly without any additional computational costs and without getting an significant
increase in the approximation error (see e.g. figure (5.1)).
4 Furthermore, we want to be consistent with our IEE approach, where the price of the coupon-
bond options can only be computed by summing over the single exercise probabilities Π Ti

t [K]
5 In this thesis, we mainly focus on the derivation of call options (w = 1), keeping
in mind that it is always easy to compute the appropriate probabilities for w = -1 via

EQ
t

[
e−
∫ T0
t r(s)ds+aX(T0,T1)1X(T0,T1)<k

]
= 1−Π Q

t,a [k] .


