## **ESSENTIALS IN OPHTHALMOLOGY** G.K.KRIEGLSTEIN · R.N.WEINREB Series Editors





and Refractive

Surgery

Uveitis and Immunological Disorders



Vitreo-retinal Surgery





**Oculoplastics** and Orbit

Paediatric Ophthalmology, Neuroophthalmology, Genetics



Cornea

and External

**Eye Disease** 

# Uveitis and Immunological Disorders

Edited by **U. PLEYER** C. S. FOSTER





#### Essentials in Ophthalmology

#### Uveitis and Immunological Disorders

U. Pleyer C. S. Foster Editors

#### Essentials in Ophthalmology

G.K.Krieglstein R.N.Weinreb Series Editors Glaucoma

**Cataract and Refractive Surgery** 

**Uveitis and Immunological Disorders** 

Vitreo-retinal Surgery

**Medical Retina** 

**Oculoplastics and Orbit** 

Pediatric Ophthalmology, Neuro-Ophthalmology, Genetics

**Cornea and External Eye Disease** 

Editors Uwe Pleyer C. Stephen Foster

## Uveitis and Immunological Disorders

With 88 Figures, Mostly in Colour and 22 Tables



#### Series Editors

#### Günter K. Krieglstein, MD

Professor and Chairman Department of Ophthalmology University of Cologne Kerpener Straße 62 50924 Cologne Germany

#### Robert N. Weinreb, MD

Professor and Director Hamilton Glaucoma Center Department of Ophthalmology University of California at San Diego 9500 Gilman Drive La Jolla, CA 92093-0946 USA

#### Volume Editors

#### Uwe Pleyer, MD

Professor of Ophthalmology Augenklinik, Charité Universitätsmedizin Berlin Campus Virchow Klinikum Augustenburger Platz 1 13353 Berlin Germany

#### C. Stephen Foster, MD

Professor of Ophthalmology Massachusetts Eye Research and Surgery Institute 5 Cambridge Center, 8th Floor Cambridge, MA 02142 USA

ISBN-10 3-540-30797-4 Springer Berlin Heidelberg NewYork

ISBN-13 978-3-540-30797-6 Springer Berlin Heidelberg NewYork ISSN 1612-3212

Library of Congress Control Number: 2006929209

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science + Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Product liability: The publishers cannot guarantee the accuracy of any information about dosage and application contained in this book. In every individual case the user must check such information by consulting the relevant literature.

Editor: Marion Philipp, Heidelberg, Germany Desk Editor: Martina Himberger, Heidelberg, Germany Production: LE-TeX Jelonek, Schmidt & Vöckler GbR, Leipzig, Germany Cover Design: Erich Kirchner, Heidelberg, Germany

Printed on acid-free paper 24/3100Wa 543210

## Foreword

The series *Essentials in Ophthalmology* was initiated two years ago to expedite the timely transfer of new information in vision science and evidence-based medicine into clinical practice. We thought that this prospicient idea would be moved and guided by a resolute commitment to excellence. It is reasonable to now update our readers with what has been achieved.

The immediate goal was to transfer information through a high quality quarterly publication in which ophthalmology would be represented by eight subspecialties. In this regard, each issue has had a subspecialty theme and has been overseen by two internationally recognized volume editors, who in turn have invited a bevy of experts to discuss clinically relevant and appropriate topics. Summaries of clinically relevant information have been provided throughout each chapter.

Each subspecialty area now has been covered once, and the response to the first eight volumes in the series has been enthusiastically positive. With the start of the second cycle of subspecialty coverage, the dissemination of practical information will be continued as we learn more about the emerging advances in various ophthalmic subspecialties that can be applied to obtain the best possible care of our patients. Moreover, we will continue to highlight clinically relevant information and maintain our commitment to excellence.

G.K.Krieglstein R.N.Weinreb Series Editors

## Preface

This second volume of Uveitis and Immunological Disorders in the Essentials in Ophthalmology series provides the reader with up-to-date and relevant information. Our knowledge and understanding of immune-mediated diseases has increased exponentially over the past few years, especially in the areas of immunopathogenesis and immunogenetics. This volume will provide the practitioner with practical information on how to diagnose and treat these difficult, and in some cases, blinding disorders. In addition, there are important discussions of the mechanisms underlying these conditions that incorporate the most recent, up-to-date research material available. The features "Summary for the Clinician" and "Core Messages" enhance the value of the chapters by helping the reader focus on the important messages in each chapter.

The scope of chapters ranges from diseases that are relatively common and usually require only topical therapy, such as ocular allergy and dry eye, to diseases that may result in blindness, such as contact lens-associated infections, autoimmune keratitis and some forms of uveitis. Several topics, for example handling corneal graft rejection and cataract extraction in uveitis patients are of particular interest for the ocular surgeon. Two chapters focus on recurrent ocular infections, herpes keratitis and ocular toxoplasmosis, which still remain sight-threatening disorders. Our better understanding of the underlying immune pathology has resulted in new treatment approaches, which are highlighted by experts on anti-TNF and gene therapeutic strategies.

This volume contains information of interest to a wide range of ophthalmic subspecialists. For example, the anterior segment subspecialist would have an interest in subjects such as contact lens associated infections, autoimmune Keratitis, ocular allergy, dry eye, corneal transplantation and herpes keratitis. Retina and uveitis specialists have a special interest in the chapters dealing with uveitis and its mechanisms and latest aspects in therapy. Lastly, the chapters on optic neuritis and neoplastic masquerade syndromes are important for interdisciplinary handling of these patients.

We are glad that the previous volume of *Uveitis and Immunological Disorders* had a broad readership and positive acceptance, which is underlined by the fact that it has been translated into Chinese and Italian.

We are sure that this edition will also reach its audience and would like to thank all authors who contributed their valuable time to complete this volume.

U. Pleyer C. S. Foster Volume Editors

## Contents

#### Chapter 1 Contact Lens-Related Corneal Infection

Barry A. Weissman, Anthony J. Aldave, Bartly J. Mondino

| 1.1     | Introduction 2             |
|---------|----------------------------|
| 1.2     | Risk Factors 4             |
| 1.2.1   | Extended Wear 4            |
| 1.2.2   | Contact Lens Care 5        |
| 1.2.3   | Role of Hypoxia 5          |
| 1.2.4   | Role of Immunology 5       |
| 1.2.5   | Role of Orthokeratology 6  |
| 1.3     | Microbes 6                 |
| 1.3.1   | Bacterial Infections 6     |
| 1.3.2   | Protozoal Infections 7     |
| 1.3.3   | Fungal Infections 8        |
| 1.3.4   | Viral Infections 8         |
| 1.4     | Treatment 9                |
| 1.4.1.  | Bacterial Infections 9     |
| 1.4.1.1 | Role of Steroids 10        |
| 1.4.1.2 | Additional Diagnostic and  |
|         | Therapeutic Steps 10       |
| 1.4.2   | Acanthamoeba Infections 10 |
| 1.4.3   | Fungal Infections 11       |
| 1.5     | Successful Treatment 11    |
| 1.6     | Concluding Remarks 11      |
|         | References 11              |
|         |                            |

#### Chapter 2

#### New Insights into the Diagnosis and Treatment of Dry Eye Syndrome

Miki Uchino, Murat Dogru, Kazuo Tsubota

| 2.1     | Introduction                   | 15 |
|---------|--------------------------------|----|
| 2.2     | Sjögren's Syndrome             | 16 |
| 2.3     | Diagnosis of Dry Eye Disease   | 16 |
| 2.3.1   | Symptoms                       | 17 |
| 2.3.2   | Assessment of Ocular Surface   |    |
|         | Epithelial Health Status       | 17 |
| 2.3.2.1 | Ocular Surface Vital Staining: |    |
|         | Fluorescein staining           | 17 |
| 2.3.2.2 | Ocular Surface Vital Staining: |    |
|         | Rose Bengal/Lissamine Green    |    |
|         | Staining                       | 17 |
|         |                                |    |

| 2.3.3 | Assessment of Tear Film<br>Stability: Invasive TBUT Using |    |
|-------|-----------------------------------------------------------|----|
|       | Fluorescein                                               | 17 |
| 2.3.4 | Assessment of Aqueous Tear                                |    |
|       | Quantity                                                  | 17 |
| 2.3.5 | Newer Diagnostic Tools                                    | 18 |
| 2.3.6 | Diagnosis of Sjögren's                                    |    |
|       | Syndrome                                                  | 19 |
| 2.3.7 | Ocular Features of Sjögren's                              |    |
|       | Syndrome                                                  | 19 |
| 2.4   | Treatment of Dry Eyes                                     | 20 |
| 2.4.1 | General Health Care                                       |    |
|       | in Sjögren's Syndrome                                     | 20 |
| 2.4.2 | Artificial Tear Solutions                                 | 20 |
| 2.4.3 | Autologous Serum Eye Drops                                | 21 |
| 2.4.4 | Albumin as a Tear                                         |    |
|       | Supplement in the Treatment                               |    |
|       | of Severe Dry Eyes                                        | 21 |
| 2.4.5 | Lacrimal Punctal Occlusion                                | 22 |
| 2.4.6 | Future Therapeutic                                        |    |
|       | Expectations                                              | 22 |
|       | References                                                | 23 |
|       |                                                           |    |

#### Chapter 3

#### Allergic Conjunctivitis: Clinical Consequences and an Update on Understanding Its Pathophysiology

Andrea Leonardi

| 3.1     | Introduction 25                   |
|---------|-----------------------------------|
| 3.2     | Clinical Forms 26                 |
| 3.2.1   | Seasonal and Perennial            |
|         | Allergic Conjunctivitis 26        |
| 3.2.2   | Vernal Keratoconjunctivitis 26    |
| 3.2.3   | Atopic Keratoconjunctivitis 28    |
| 3.2.4   | Giant Papillary Conjunctivitis 29 |
| 3.2.5   | Contact                           |
|         | Blepharoconjunctivitis 29         |
| 3.3     | Diagnosis 30                      |
| 3.3.1   | Diagnostic Assays in Ocular       |
|         | Allergy 30                        |
| 3.3.1.1 | Skin-Prick Test 30                |
| 3.3.1.2 | Patch Test 31                     |
| 3.3.2   | In Vitro Assays 31                |

#### X Contents

| 3.3.3   | Local Tests 31                 |
|---------|--------------------------------|
| 3.3.3.1 | Conjunctival Provocation       |
|         | Test or Conjunctival Allergen  |
|         | Challenge 31                   |
| 3.3.3.2 | Measurement of Specific IgE    |
|         | in Tears 32                    |
| 3.3.3.3 | Measurement of Total IgE in    |
|         | Tears 32                       |
| 3.3.3.4 | Conjunctival Cytodiagnosis 32  |
| 3.3.3.5 | Tear Chemical Mediator         |
|         | Measurement 33                 |
| 3.4     | Immunopathogenesis 33          |
| 3.4.1   | Sensitization 34               |
| 3.4.2   | Allergic Response 34           |
| 3.5     | Treatment of Ocular Allergy 37 |
| 3.5.1   | Anti-Allergic Medication 38    |
| 3.5.1.1 | Vasoconstrictors 38            |
| 3.5.1.2 | Antihistamines 38              |
| 3.5.1.3 | Systemic Antihistamines 38     |
| 3.5.1.4 | Mast Cell Stabilizers 38       |
| 3.5.1.5 | Dual Action                    |
|         | Anti-Allergic Molecules 39     |
| 3.5.1.6 | Nonsteroidal Anti-             |
|         | Inflammatory Drugs 39          |
| 3.5.1.7 | Corticosteroids 39             |
| 3.5.1.8 | Immunomodulators 40            |
| 3.5.2   | Nonpharmacological             |
|         | Management 40                  |
| 3.5.3   | Surgical Treatment 41          |
|         | References 41                  |
|         |                                |

#### Chapter 4

#### Current Aspects of the Immunobiology and Prevention of Corneal Graft Rejection: What Have We Learned from 100 Years of Keratoplasty?

X.Q. Li, S. Schlickeiser, U. Pleyer

| 4.1     | Introduction                 | 46 |
|---------|------------------------------|----|
| 4.1.1   | History and Prevalence of    |    |
|         | Allograft Rejection          | 46 |
| 4.1.2   | Local Immunological Features |    |
|         | of the Cornea                | 46 |
| 4.1.2.1 | Corneal Immunogenicity       | 46 |
| 4.1.2.2 | Immune Privilege             | 48 |
| 4.1.2.3 | Anterior Chamber-Associated  |    |
|         | Immune Deviation             | 50 |
| 4.2     | Mechanisms of Corneal        |    |
|         | Allograft Rejection          | 50 |
| 4.2.1   | Antigen Presentation         | 51 |

| 4.2.1.1 | Antigen-Presenting Cells        | 51 |
|---------|---------------------------------|----|
| 4.2.1.2 | Direct/Indirect Pathway of      |    |
|         | Antigen Presentation            | 51 |
| 4.2.2   | T Cell Activation: Principle of |    |
|         | Costimulation                   | 53 |
| 4.2.2.1 | CD28-CD80/CD86                  |    |
|         | Costimulatory Signal            |    |
|         | Pathway                         | 53 |
| 4.2.2.2 | CD40-CD154 (CD40L)              |    |
|         | Costimulatory Signal            |    |
|         | Pathway                         | 53 |
| 4.2.3   | Role of Immune Cells and        |    |
|         | Molecular Mediators in Graft    |    |
|         | Rejection                       | 55 |
| 4.2.3.1 | Cellular Infiltration           | 55 |
| 4.2.3.2 | Molecular Mediators             | 55 |
| 4.2.4   | Th1/Th2 Paradigm                | 57 |
| 4.2.5   | Role of Draining Cervical       |    |
|         | Lymph Nodes in Corneal          |    |
|         | Allograft Rejection             | 58 |
| 4.2.6   | Role of Cytotoxic T             |    |
|         | Lymphocyte Response             |    |
|         | in Corneal Graft Rejection      | 58 |
| 4.3     | Strategies for the Prevention   |    |
|         | of Allograft Rejection          | 60 |
| 4.3.1   | Use of HLA-matched              |    |
|         | Transplants                     | 60 |
| 4.3.2   | Immunmodulatory Agents in       |    |
|         | Keratoplasty                    | 62 |
| 4.3.2.1 | Care of Normal-Risk             |    |
|         | Keratoplasty Patients           | 62 |
| 4.3.2.2 | Care of High-Risk Keratoplasty  |    |
|         | Patients                        | 65 |
| 4.3.3   | Future Aspects:                 |    |
|         | Immunological and Gene          |    |
|         | Therapy Approaches              | 68 |
| 4.3.3.1 | Monoclonal Antibodies and       |    |
|         | Other "Biologicals"             | 68 |
| 4.3.3.2 | Gene Therapy                    | 68 |
|         | References                      | 69 |

#### Chapter 5

#### **Autoimmune Keratitis**

John D. Gottsch

| 5.1   | Introduction                  | 77 |
|-------|-------------------------------|----|
| 5.2   | Background                    | 78 |
| 5.2.1 | Differential Diagnosis of     |    |
|       | Patient with Stromal Thinning |    |

| Laboratory Tests                | 78 | 6.4       | T Lymphocy    |
|---------------------------------|----|-----------|---------------|
| Autoimmune Keratitis            | 79 |           | HSK           |
| Mechanisms of Autoimmune        |    | 6.5       | Antigen Pres  |
| Keratopathy                     | 79 | 6.6       | Cytokines ar  |
| Rheumatoid Arthritis            | 79 |           | HSK           |
| Rheumatoid Peripheral           |    | 6.7       | New Experir   |
| Ulcerative Keratitis            | 80 |           | Approaches    |
| Diagnosis                       | 80 |           | References    |
| Treatment                       | 80 |           |               |
| Rheumatoid Paracentral          |    | Chapter   | 7             |
| Ulcerative Keratitis            | 81 | Genetic   | Insights int  |
| Scleritis-Associated Peripheral |    | Friederil | ke Mackenser  |
| Keratopathy                     | 81 | Tammy     | M. Martin, Ja |
| Postsurgical Ulcerative         |    | 1         |               |
| Keratitis                       | 82 | 7.1       | Introduction  |

| 5.3.4   | Rheumatoid Paracentral          |    |
|---------|---------------------------------|----|
|         | Ulcerative Keratitis            | 81 |
| 5.3.5   | Scleritis-Associated Peripheral |    |
|         | Keratopathy                     | 81 |
| 5.3.6   | Postsurgical Ulcerative         |    |
|         | Keratitis                       | 82 |
| 5.3.7   | Sjögren's Syndrome              | 82 |
| 5.3.8   | Wegener's Granulomatosis        | 83 |
| 5.3.9   | Polyarteritis Nodosa            | 83 |
| 5.3.10  | Systemic Lupus                  |    |
|         | Erythematosus                   | 83 |
| 5.3.11  | Relapsing Polychondritis        | 84 |
| 5.3.12  | Mooren's Ulcer                  | 84 |
| 5.4     | Systemic Immunosuppression      |    |
|         | in Autoimmune Keratitis         | 85 |
| 5.4.1   | Classification of               |    |
|         | Immunosuppressive Drugs         | 85 |
| 5.4.1.1 | Antimetabolites                 | 86 |
| 5.4.1.2 | Alkylating Agents               | 86 |
| 5.4.1.3 | T Cell Inhibitors               | 86 |
| 5.4.1.4 | Proinflammatory Cytokine        |    |
|         | Antibodies                      | 86 |
| 5.5     | Surgical Intervention           |    |
|         | in Autoimmune Keratitis         | 86 |
| 5.5.1   | Gluing                          | 86 |
| 5.5.2   | Corneal Patch Grafting          | 87 |
| 5.5.3   | Ulceration in the Setting of a  |    |
|         | Patch Graft                     | 87 |
| 5.6     | Conclusions                     | 88 |
|         | References                      | 88 |

5.2.2

5.3.1

5.3.2

5.3.3

5.3.3.1

5.3.3.2

5.3

#### Chapter 6 **Recent Developments in Herpes Stromal Keratitis**

Gregory M. Frank, Robert L. Hendricks

| 6.1 | Introduction                | 92 |
|-----|-----------------------------|----|
| 6.2 | HSV-1 Latency and Recurrent |    |
|     | HSK                         | 92 |
| 6.3 | Murine Model of HSK         | 93 |

. . .

XI

| 6.4 | T Lymphocyte Involvement in |    |
|-----|-----------------------------|----|
|     | HSK                         | 94 |
| 6.5 | Antigen Presentation in HSK | 95 |
| 6.6 | Cytokines and Chemokines in |    |
|     | HSK                         | 96 |
| 6.7 | New Experimental            |    |
|     | Approaches to Treating HSK  | 97 |
|     | References                  | 98 |

### to Uveitis

n, Zili Zhang, ames T. Rosenbaum

| 7.1     | Introduction 10                | )1 |
|---------|--------------------------------|----|
| 7.1.1   | Overview 10                    | )1 |
| 7.1.2   | General Approaches to          |    |
|         | Genetic Study 10               | )2 |
| 7.2     | Uveitis Associated with        |    |
|         | Human Leukocyte Antigen        |    |
|         | Genes 10                       | )3 |
| 7.2.1   | What Is the Human              |    |
|         | Leukocyte Antigen? 10          | )3 |
| 7.2.2   | From HLA Association to        |    |
|         | Disease? 10                    | )3 |
| 7.2.3   | HLA-Associated Uveitis 10      | )4 |
| 7.2.3.1 | Acute Anterior Uveitis 10      | )4 |
| 7.2.3.2 | Chronic Anterior Uveitis in    |    |
|         | Juvenile-Onset Arthritis 10    | )4 |
| 7.2.3.3 | Pars Planitis 10               | )4 |
| 7.2.3.4 | Birdshot                       |    |
|         | Retinochoroidopathy 10         | )6 |
| 7.3     | Uveitis Associations with Non- |    |
|         | HLA Genes 10                   | )6 |
| 7.3.1   | Tumor Necrosis Factor          |    |
|         | Alpha 10                       | )6 |
| 7.3.2   | Interferons 10                 | )7 |
| 7.3.3   | CARD15/NOD2 10                 | )8 |
| 7.4     | Concluding Remarks 10          | )9 |
|         | References 11                  | 10 |

#### Chapter 8

#### **Cataract Surgery in Patients with Uveitis**

Jorge L. Alio, Javier A. Montero

| 8.1 | Introduction            | 113 |
|-----|-------------------------|-----|
| 8.2 | Surgical Indication     | 114 |
| 8.3 | Patient Preparation     | 115 |
| 8.4 | Control of Inflammation | 115 |
| 8.5 | Surgical Procedure      | 117 |

#### XII Contents

| 8.5.1   | Choice of Intraocular Lens    | 119 |
|---------|-------------------------------|-----|
| 8.5.2   | Combined Surgery              | 121 |
| 8.5.2.1 | Glaucoma                      | 121 |
| 2.2.2.2 | Vitrectomy                    | 122 |
| 8.6     | Postoperative                 |     |
|         | Inflammation                  | 123 |
| 8.7     | Complications                 | 124 |
| 8.8     | Cataract Surgery in Specific  |     |
|         | Cases                         | 125 |
| 8.8.1   | Cataract Surgery in Children  |     |
|         | with Uveitis                  | 125 |
| 2.2.2   | Phacoemulsification in Fuchs' |     |
|         | Heterochromic Cyclitis        | 125 |
| 8.8.3   | Ocular Toxoplasmosis          | 126 |
| 8.8.4   | Pars Planitis, Behcet's       |     |
|         | Disease, VKH Syndrome, and    |     |
|         | Multifocal Chorioretinitis    | 126 |
|         | References                    | 127 |
|         |                               |     |

#### Chapter 9

#### **Ocular Toxoplasmosis**

Cristina Muccioli, Rubens Belfort Jr

| 9.1    | Introduction                 | 132 |
|--------|------------------------------|-----|
| 9.2    | Epidemiology                 | 132 |
| 9.3    | Infection                    | 133 |
| 9.4    | Clinical Features            | 133 |
| 9.5    | Ocular Disease               | 133 |
| 9.5.1  | Newborns                     |     |
|        | with Congenital Disease      | 134 |
| 9.5.2  | Signs Associated with Active |     |
|        | Disease                      | 134 |
| 9.5.3  | Course of Disease            | 134 |
| 9.5.4  | Immunosuppressed             |     |
|        | Patients                     | 134 |
| 9.6    | Clinical Signs and           |     |
|        | Symptoms                     | 136 |
| 9.7    | Serologic Tests              | 136 |
| 9.8    | Imaging and Diagnostic       |     |
|        | Tests                        |     |
| 9.8.1  | Fluorescein Angiography      | 137 |
| 9.8.2  | Indocyanine Green            |     |
|        | Angiography                  | 138 |
| 9.8.3  | Optical Coherence            |     |
|        | Tomography                   | 138 |
| 9.8.4  | Ultrasonography              | 139 |
| 9.9    | Pathology                    | 139 |
| 9.10   | Treatment                    | 139 |
| 9.10.1 | Goal                         | 139 |
| 9.10.2 | Antimicrobial Agents         | 139 |

| 9.10.3 | Corticosteroids 140         |
|--------|-----------------------------|
| 9.10.4 | Complications 140           |
| 9.11   | Disease in Immunosuppressed |
|        | Patients 141                |
| 9.11.1 | Risk Factor 141             |
| 9.11.2 | Ocular Disease 141          |
|        | References 142              |

#### Chapter 10 Vogt-Koyanagi-Harada Disease and Sympathetic Ophthalmia

P. Kumar Rao, Narsing A. Rao

| 10.1   | Introduction              | 145 |
|--------|---------------------------|-----|
| 10.2   | Vogt-Koyanagi-Harada      |     |
|        | Disease                   | 145 |
| 10.2.1 | Historical Aspects        | 146 |
| 10.2.2 | Epidemiology              | 146 |
| 10.2.3 | Clinical Features         | 146 |
| 10.2.4 | Pathogenesis and          |     |
|        | Pathology                 | 149 |
| 10.2.5 | Laboratory Investigations | 150 |
| 10.2.6 | Differential Diagnosis    | 150 |
| 10.2.7 | Treatment                 | 150 |
| 10.2.8 | Prognosis and             |     |
|        | Complications             | 151 |
| 10.3   | Sympathetic Ophthalmia    | 151 |
| 10.3.1 | Clinical Features         | 152 |
| 10.3.2 | Pathology and             |     |
|        | Pathogenesis              | 152 |
| 10.3.3 | Differential Diagnosis    | 153 |
| 10.3.4 | Therapy                   | 153 |
| 10.3.5 | Complications and         |     |
|        | Prognosis                 | 153 |
|        | References                | 154 |

#### Chapter 11

#### Neoplastic Masquerade Syndromes

Sarah E. Coupland

| 11.1     | Introduction          | 157 |
|----------|-----------------------|-----|
| 11.2     | Lymphoid Malignancies | 158 |
| 11.2.1   | Primary Intraocular   |     |
|          | Lymphoma              | 158 |
| 11.2.1.1 | Epidemiology of PIOL  | 159 |
| 11.2.1.2 | Symptoms and Signs    |     |
|          | of PIOL               | 159 |
| 11.2.1.3 | Ophthalmic Findings   |     |
|          | in PIOL               | 159 |
| 11.2.1.4 | Diagnostic Techniques | 160 |

| 11.2.1.5 | Laboratory Studies:          |     |
|----------|------------------------------|-----|
|          | Cytological and Histological |     |
|          | Diagnosis in PIOL            | 160 |
| 11.2.1.6 | Biochemical and Molecular    |     |
|          | Analysis of PIOL             | 162 |
| 11.2.1.7 | Treatment of PIOL            | 163 |
| 11.2.1.8 | Prognosisof PIOL             | 164 |
| 11.2.2   | Primary Uveal Lymphomas      | 164 |
| 11.2.2.1 | Primary Choroidal            |     |
|          | Lymphoma                     | 165 |
| 11.2.2.2 | Primary Iridal Lymphoma      | 166 |
| 11.2.2.3 | Secondary Intraocular        |     |
|          | Lymphoma or Leukemia         | 167 |
| 11.2.2.4 | Post-Transplantation         |     |
|          | Lymphoproliferative          |     |
|          | Disorder                     | 167 |
| 11.3     | Nonlymphoid Malignancies     | 167 |
| 11.3.1   | Uveal Melanoma               | 167 |
| 11.3.2   | Retinoblastoma               | 167 |
| 11.3.3   | Juvenile Xanthogranuloma     | 167 |
| 11.3.4   | Metastatic Tumors            | 168 |
| 11.3.4.1 | Uveal Metastases             | 168 |
| 11.3.4.2 | Retinal Metastases           | 168 |
|          | References                   | 169 |
|          |                              |     |

#### Chapter 12

#### Tumor Necrosis Factor Alpha-Targeted Therapies in Uveitis

Susan Cochrane, Andrew D. Dick

| 12.1     | Introduction                 | 177 |
|----------|------------------------------|-----|
| 12.2     | Evidence of the Use of Anti- |     |
|          | TNFα Agents                  | 178 |
| 12.2.1   | What is TNFα?                | 178 |
| 12.2.2   | Role in the Immune           |     |
|          | Response                     | 178 |
| 12.2.3   | Role in Uveitis – Data in    |     |
|          | Animals and Man              | 178 |
| 12.2.3.1 | Experimental Autoimmune      |     |
|          | Uveoretinitis                | 178 |
| 12.2.3.2 | Endotoxin-InducedUveitis     | 179 |
| 12.2.3.3 | Clinical Uveitis             | 179 |
| 12.3     | Anti-TNFa Agents             | 179 |
| 12.3.1   | Neutralizing Antibodies      | 180 |
| 12.3.1.1 | Infliximab                   | 180 |
| 12.3.1.2 | Adalimumab                   | 181 |
| 12.3.2   | Fusion Proteins              | 185 |
| 12.3.2.1 | Etanercept                   | 185 |
| 12.3.2.2 | Other Fusion Proteins        | 185 |
| 12.4     | Studies in Uveitis           | 185 |

| 12.4.1   | Posterior Segment Intraocular |     |
|----------|-------------------------------|-----|
|          | Inflammation                  | 185 |
| 12.4.1.1 | Behcet's Disease              | 185 |
| 12.4.1.2 | Other Posterior Segment       |     |
|          | Intraocular Inflammation      | 186 |
| 12.4.2   | Anterior Uveitis –Juvenile    |     |
|          | IdiopathicArthritis and       |     |
|          | Ankylosing Spondylitis        | 186 |
| 12.4.3   | Other Ocular Inflammation     | 187 |
| 12.5     | Caveats                       | 188 |
| 12.5.1   | Inhibition of Macrophage      |     |
|          | Function – Tuberculosis       | 188 |
| 12.5.2   | Lymphoma Development          | 188 |
| 12.5.3   | Multiple Sclerosis and TNFα   |     |
|          | Blockade                      | 189 |
| 12.5.4   | Other Autoimmune Disease      |     |
|          | and Autoantibody              |     |
|          | Production                    | 189 |
| 12.5.5   | Anti-Drug Antibodies          | 190 |
| 12.6     | Future Directions             | 190 |
|          | References                    | 191 |

#### Chapter 13

#### Immunotherapy of Uveitis: is Gene Therapy in our Future?

Rachel R. Caspi

| 13.1     | Human Inflammatory Uveitis<br>of Putative Autoimmune |     |
|----------|------------------------------------------------------|-----|
| 13.2     | Origin 1<br>Experimental Autoimmune                  | 93  |
|          | Uveoretinitis – a Model for                          |     |
|          | Human Autoimmune                                     |     |
|          | Uveitis 1                                            | 94  |
| 13.3     | Immunotherapeutic                                    |     |
|          | Paradigms: Antigen-Specific                          |     |
|          | vs. Non-Antigen-Specific;                            |     |
|          | Systemic vs. Local 1                                 | 98  |
| 13.4     | Gene Therapy as an Approach                          |     |
|          | to Immunotherapy 1                                   | 99  |
| 13.4.1   | Gene Therapy of EAU                                  |     |
|          | by Peripheral Expression                             |     |
|          | of a Uveitogenic Retinal                             |     |
|          | Antigen 1                                            | 99  |
| 13.4.1.1 | Cellular Therapy with                                |     |
|          | Autologous B Cells Expressing                        |     |
|          | a Uveitogenic Epitope 2                              | 202 |
| 13.4.1.2 | DNA Vaccination for                                  |     |
|          | Tolerance 2                                          | 203 |
|          |                                                      |     |

#### XIV Contents

| 13.4.2 | Local Transfer<br>into the Eye of Genes<br>Encoding Immunoinhibitory |
|--------|----------------------------------------------------------------------|
|        | Molecules 204                                                        |
| 13.4.3 | RNA Interference as a Future                                         |
|        | Prospect 206                                                         |
| 13.5   | Conclusions 207                                                      |
|        | Acknowledgements 207                                                 |
|        | References 207                                                       |
|        |                                                                      |

#### Chapter 14

## Optic Neuritis from the Perspective of an Ophthalmologist

Klaus Ruether

| 14.1 | Introduction | <br>211 |
|------|--------------|---------|
| 14.2 | Pathogenesis | <br>212 |

| 14.2.1            | Pathology and Immunology 212 |     |
|-------------------|------------------------------|-----|
| 14.2.2            | Relationship Between         |     |
|                   | Optic Neuritis and Multiple  |     |
|                   | Sclerosis                    | 213 |
| 14.3              | Diagnosis                    | 213 |
| 14.3.1            | Ophthalmologic               | 213 |
| 14.3.2            | Non-Ophthalmologic           |     |
|                   | Diagnostic Tools             | 219 |
| 14.4              | Treatment                    | 220 |
| 14.4.1            | Natural Course               | 220 |
| 14.4.2            | High-Dose                    |     |
|                   | Methylprednisolone           | 220 |
| 14.4.3            | Immunomodulation             | 221 |
|                   | References                   | 222 |
| Subject Index 22. |                              |     |
|                   |                              |     |

## Contributors

#### Anthony J. Aldave, MD

Assistant Professor of Ophthalmology Jules Stein Eye Institute, and Department of Ophthalmology David Geffen School of Medicine at UCLA 100 Stein Plaza Los Angeles, CA 90095-7003 USA

#### Jorge L. Alio, MD

Professor of Ophthalmology Instituto Oftalmológico de Alicante VISSUM Avda de Denia s/n. Alicante 03016 Spain

#### **Rubens Belfort Jr., MD**

Professor of Ophthalmology Department of Ophthalmology Federal University of São Paulo Rua Botucatu 8201822 São Paulo – SP Brazil

#### Rachel R. Caspi, PhD

Laboratory of Immunology, National Eye Institute, National Institutes of Health 10 Center Drive Bethesda, MD 20892 USA

#### Susan Cochrane, MD

Academic Unit of Ophthalmology, University of Bristol and Bristol Eye Hospital Lower Maudlin Street Bristol BS1 2LX UK

#### Sarah E. Coupland, MD

Department of Cellular and Molecular Pathology University of Liverpool Liverpool, L69 3GA UK

#### Andrew D. Dick, MD

Professor of Ophthalmology Academic Unit of Ophthalmology, University of Bristol and Bristol Eye Hospital Lower Maudlin Street Bristol BS1 2LX UK

#### Murat Dogru, MD

Assistant Professor of Ophthalmology Department of Ophthalmology Keio University School of Medicine Shinanomachi 35 Shinjukuku, Tokyo Japan

#### C. Stephen Foster, MD

Professor of Ophthalmology Massachusetts Eye Research and Surgery Institute 5 Cambridge Center, 8th Floor Cambridge, MA 02142 USA

#### Gregory M. Frank, MD

Department of Ophthalmology and Graduate Program in Immunology School of Medicine, University of Pittsburgh Pittsburgh, PA 15213 USA

#### John D. Gottsch, MD

Professor of Ophthalmology Wilmer Ophthalmological Institute Maumenee Building, Room 321 The Johns Hopkins Hospital Baltimore, MD 21287 USA

#### Robert L. Hendricks, PhD

Departments of Immunology and Molecular Genetics and Biochemistry School of Medicine, University of Pittsburgh Pittsburgh, PA 15213 USA

#### Andrea Leonardi, MD

Department of Neuroscience, Ophthalmology Unit University of Padua Via Giustiniani 2 35128 Padova Italy

#### Xiaoqing Li, MD

Assistant Professor Augenklinik, Charité Universitätsmedizin Berlin Campus Virchow Klinikum Augustenburger Platz 1 13353 Berlin Germany

Department of Ophthalmology Union Hospital Tongij Medical College Huazhong University of Science and Technology 430022 Wuhan China

#### Friederike Mackensen, MD

Interdisciplinary Uveitis Center INF 350 69120 Heidelberg Germany

#### Tammy M. Martin, Phd

Research Assistant Professor of Ophthalmology Casey Eye Institute, Oregon Health and Science University 3375 SW Terwilliger Boulevard. Portland, OR 97239 USA

#### **Bartly J. Mondino, MD**

Professor of Ophthalmology Jules Stein Eye Institute, and Department of Ophthalmology David Geffen School of Medicine at UCLA 100 Stein Plaza Los Angeles, CA 90095-7003 USA

#### Javier A. Montero, MD

Instituto Oftalmológico de Alicante VISSUM Avda de Denia s/n. Alicante 03016 Spain

#### Cristina Muccioli, MD

Department of Ophthalmology Federal University of São Paulo Rua Botucatu 8201822 São Paulo – SP Brazil

#### **Uwe Pleyer, MD**

Professor of Ophthalmology Augenklinik, Charité Universitätsmedizin Berlin Campus Virchow Klinikum Augustenburger Platz 1 13353 Berlin Germany

#### Narsing A. Rao, MD

Professor of Ophthalmic Pathology University of Southern California Doheny Eye Institute 1450 San Pablo Street Los Angeles, CA 90033 USA

#### P. Kumar Rao, MD

Assistant Professor of Ophthalmology Center for Advanced Medicine Barnes Retina Institute 4921 Parkville Place, Suite 12B St Louis, MO 63110 USA

#### James T. Rosenbaum, MD

Professor of Medicine, Ophthalmology, and Cell Biology Casey Eye Institute, Oregon Health and Science University 3375 SW Terwilliger Boulevard Portland, OR 97239 USA

#### Klaus Ruether, MD

Professor of Ophthalmology Charité-Augenklinik, Campus Virchow-Klinikum Humboldt-Universität Augustenburger Platz 1 13353 Berlin Germany

#### Stephan Schlickeiser, M

Research fellow Augenklinik, Charité Universitätsmedizin Berlin Campus Virchow Klinikum Augustenburger Platz 1 13353 Berlin Germany

#### Kazuo Tsubota, MD

Department of Ophthalmology Keio University School of Medicine Shinanomachi 35 Shinjukuku, Tokyo Japan

#### Miki Uchino, MD

Department of Ophthalmology Keio University School of Medicine Shinanomachi 35 Shinjukuku, Tokyo Japan

#### Barry A. Weissman, OD, PhD

Professor of Ophthalmology Jules Stein Eye Institute, and Department of Ophthalmology David Geffen School of Medicine at UCLA 100 Stein Plaza Los Angeles, CA 90095-7003 USA

#### Zili Zhang, MD

Assistant Professor of Pediatrics Oregon Health and Science University 3181 SW Sam Jackson Park Road Portland, OR 97239 USA

## Contact Lens-Related Corneal Infection

Barry A. Weissman, Anthony J. Aldave, Bartly J. Mondino

#### Core Messages

- Complications of contact lens wear are numerous and occur in all external ocular tissues. Only microbial keratitis (MK) and neovascularization, however, are common causes of associated loss of vision.
- MK is an ophthalmic emergency because of the potential for loss of vision.
- Contact lens wear has become a major risk factor for MK, joining trauma, dry eye, and preceding corneal surgery (e.g., cataract extraction, penetrating keratoplasty, refractive surgery).
- Extended wear and poor contact lens care remain the major risk factors for contact lens-associated MK.
- Using modern, highly oxygen permeable contact lenses (Dk values of 100 Fatt units or greater) under open-eye conditions should result in corneal oxygenation similar to that found without any contact lenses. Use of high-Dk rigid and soft lenses for extended wear may moderate the risk of MK, but may not reduce it to the levels found with daily wear of contact lenses.

- Bacteria cultured from contact lens-associated MK are commonly *Pseudomonas* sp. and *Staphylococcus sp.* Bacterial MK is more commonly associated with extended contact lens wear as well as poor contact lens care and hygiene.
- Milder, less threatening, presumed bacterial MK is often initially treated with topical antibiotic monotherapy and close professional supervision, but more severe and/or central infections should first undergo laboratory investigations (cultures, smears, stains) and then be treated aggressively with fortified antibiotics. The clinician should always remain suspicious of *Acanthamoeba* in any contact lens-associated MK.
- Acanthamoeba MK is more commonly associated with daily wear, poor contact lens care, and lens exposure to fresh water as opposed to proper contact lens care solutions. Acanthamoeba infections can masquerade as herpetic or fungal keratitis in particular, and pain is often out of proportion to the clinical signs.
- Steroid treatment of contact lens-associated MK remains controversial.
- Customized rigid gas permeable contact lenses can often improve vision dramatically after MK has healed, decreasing the need for corneal transplantation.

#### **1.1 Introduction**

The traditional major risk factors for microbial corneal infection (microbial keratitis or MK) include trauma and preceding corneal compromise such as surgery (e.g., cataract extraction, penetrating keratoplasty, refractive surgery) or herpetic corneal disease. Other participating factors include systemic (e.g., HIV infection, diabetes) and local (topical steroid treatment) immuno-suppression, acne rosacea/blepharitis, severe dry eye, and corneal exposure. Contact lens wear has emerged as another risk factor for MK during the past 50 years [14, 43].

Contact lens wear has a long list of potential complications including edema of the various corneal layers, corneal abrasions and neovascularization, and lens soilage and its sequelae (i.e., giant papillary conjunctivitis; Table 1.1), but most patients rarely experience problems that result in permanent vision loss.

#### Summary for the Clinician

- Complications of contact lens wear can affect all ocular tissues, but are usually benign if patients refrain from sleeping or napping with contact lenses in their eyes, and when patients are compliant with good contact lens care and appropriate hygiene.
- Most complications are self-limiting, reversing even without medical treatment when contact lenses are removed.
- Both MK and neovascularization, however, may result in more serious vision compromise.

Microbial keratitis is unfortunately also a complication of contact lens wear, and, while rare, contact lens-related MK is a sight-threatening disease. For this reason, MK is considered an ophthalmic emergency. Even when "successfully" treated, MK can result in corneal scarring and neovascularization leading to the loss of central corneal clarity, necessitating a corneal transplant in an effort to restore vision. Unsuccessful management may result in the permanent loss of visual function and perhaps even the loss of an eye. Because it can result in a substantial loss of vision, MK is the contact lens wear-associated complication of most concern to both patients and practitioners alike.

Microbial keratitis is identified by the symptoms of sudden-onset ocular pain or foreign body sensation, decreased vision, photophobia, conjunctival vascular injection, discharge and/or lid crusting, blepharospasm, and by the observation of clinical signs of a corneal epithelial/stromal defect with associated inflammatory response (corneal infiltration). MK is often accompanied by an anterior chamber reaction (including a hypopyon in some cases) and lid swelling. Stein et al. [55] found that culture-proven contact lensassociated bacterial corneal infections were more likely:

- 1. When lesions were single and large rather than multiple, arcuate or small;
- With epithelial defects, conjunctival discharge, and anterior chamber reactions;
- 3. When patients were more rather than less symptomatic (pain and photophobia) (Table 1.2).

When suspicious signs and symptoms are found in a contact lens wearer, lesions should be assumed to be infectious in nature and treated accordingly (see below for treatment protocols) until proven otherwise. Whenever any of the signs or symptoms of corneal infection occur, contact lens wear should also be immediately discontinued in both eyes to decrease the potential for bilateral disease.

To add to clinical confusion, however, both corneal infiltrates and epithelial erosions (varying from mild staining to frank abrasion) can occur as nonconcomitant lesions and as such are often noninfectious. Causes include hypoxia, toxic or hypersensitivity reactions, mechanical lens defects and poor fits, lens over-wear, and foreign bodies. Treatment of either of these complications may be similar or differ from that of corneal infection, but is beyond the scope of this chapter.

Other causes of red, painful eyes not specifically associated with contact lens wear that must also be considered in the differential diagnosis include conjunctivitis (allergic as well as infectious), glaucoma (especially acute angle closure), and both iritis and uveitis.

**Table 1.1** Physiological complications of contact lens wear. (From [19], with permission.) GPC giant papillary conjunctivitis, SEAL superior epithelial arcuate lesion, MK microbial keratitis

| Tissue                      | Complication type: probable cause(s)                                                                                                   |  |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|
| Lids                        | Toxicity: solution sensitivity                                                                                                         |  |
|                             | Allergy: papillary conjunctivitis; GPC due to lens soilage                                                                             |  |
|                             | Ptosis: GPC; lens insertion and removal                                                                                                |  |
|                             | Blepharitis: bacterial; meibomian gland dysfunction                                                                                    |  |
| Bulbar conjunctiva          | Injection: mechanical irritation, dry eye; solution sensitivity; hypoxia                                                               |  |
|                             | Edema: mechanical irritation; solution sensitivity                                                                                     |  |
|                             | Staining: mechanical irritation; solution sensitivity                                                                                  |  |
| Corneal epithelium          | 3–9 stain: desiccation; contact lens edge chafing                                                                                      |  |
|                             | Pancorneal stain: solution sensitivity; toxicity; blepharitis                                                                          |  |
|                             | SEAL: mechanical lens problem; lens soilage                                                                                            |  |
|                             | Inferior arcuate stain: desiccation through soft lens                                                                                  |  |
|                             | Foreign body tracks: mechanical foreign body or lens defect                                                                            |  |
|                             | Cluster stain: contact lens over-wear; hypoxia                                                                                         |  |
|                             | Inferior band (exposure) stain: dry eye (exposure keratopathy); blepharitis                                                            |  |
|                             | Abrasion: mechanical foreign body or lens defect; hypoxia; flat contact<br>lens fit, keratoconus, anterior basement membrane dystrophy |  |
|                             | Dimple veil: air bubbles trapped in the tears be-<br>tween the lens and the anterior corneal surface                                   |  |
|                             | Infiltration: infection (viral, bacterial, etc.); solution sensitivity; hypoxia                                                        |  |
|                             | Edema (microcysts): hypoxia, endothelial cell dysfunction                                                                              |  |
| Corneal stroma              | Edema (central corneal clouding or stromal striae); hy-<br>poxia; endothelial cell dysfunction                                         |  |
|                             | Infiltrates: infection (viral, bacterial, etc.); solution sensitivity; hypoxia                                                         |  |
| Neovascularization          | 3-9: pseudopterygium: chronic desiccation; chronic lens edge defects, chafing                                                          |  |
|                             | Pannus: hypoxia; noncontact lens cause                                                                                                 |  |
|                             | Deep stromal vessels: hypoxia; noncontact lens cause (e.g., MK, lues, keratoconus)                                                     |  |
| Corneal endothelium         | Blebs: acute hypoxia, Fuch's dystrophy                                                                                                 |  |
|                             | Polymegathism: chronic hypoxia; ageing; anterior segment surgery; Fuch's dystrophy                                                     |  |
| Microbial corneal infection | Bacterial, protozoal (amoebic), fungal. Viral                                                                                          |  |

**Table 1.2** Clinical comparison between bacterial and noninfectious keratitis. (Reprinted from [58], with permission from Elsevier.)

| Feature              | Bacterial keratitis                                                                                                                                      | Noninfectious keratitis                                                                                                 |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Onset                | Usually acute                                                                                                                                            | Subacute or acute                                                                                                       |
| Predisposing factors | Various: trauma, contact lens wear, prior<br>ocular surface disease, and surgery                                                                         | Various, including toxic and allergic<br>insults, contact lens wear, blepharo-<br>conjunctivitis, herpetic eye disease. |
| Symptoms             | Moderate to severe, increas-<br>ing pain and light sensitivity                                                                                           | Variable, usually initially mild dis-<br>comfort or foreign body sensation                                              |
| Eyelids              | Lid edema                                                                                                                                                | Pseudoptosis possible                                                                                                   |
| Conjunctiva          | Marked hyperemia with episcleral injection and mucopurulent discharge                                                                                    | Mild hyperemia with mu-<br>coid or watery discharge                                                                     |
| Corneal epithelium   | Usually ulcerated; single larger lesions more common                                                                                                     | Usually intact, possibly with punctate staining; can be multiple or arcuate lesions                                     |
| Corneal stroma       | White-yellow suppurative infiltrate<br>with blurred margins and surrounding<br>inflammatory cells and edema, > 1.5<br>mm, increasing over 24 to 36 hours | White-gray superficial infiltrates usually <1–1.5 mm (tend to remain small)                                             |
| Corneal endothelium  | Pseudoguttata with occasional<br>inflammatory plaque or ring<br>under stromal infiltrate                                                                 | Minimal changes                                                                                                         |
| Anterior chamber     | Variable: cells/flare/hypopyon common                                                                                                                    | Mild; cells and flare, hypopyon uncommon                                                                                |

#### Summary for the Clinician

Microbial keratitis is distinguished from noninfectious kerato-conjunctivitis by its increased severity of symptoms (pain and photophobia) and signs of corneal epithelial defects with associated inflammation (corneal infiltrates, conjunctival injection, and both anterior chamber cell/flare/hypopyon and lid swelling).

#### 1.2 Risk Factors

#### 1.2.1 Extended Wear

Patients can use contact lenses for wear solely during their normal daily activities ("open" eye) or also for use over one or several sleep cycles (extended wear or "closed" eye conditions). "Continuous" wear, alternatively, has been defined as contact lens wear uninterrupted by any intentional occasional lens removal.

The extended and continuous wear of hydrogel contact lenses, in particular, has been shown in several studies to increase the risk of MK [23, 40, 57]. MK has been shown to have an incidence of about 20 per 10,000 people using hydrogel contact lenses for extended wear and about 4 per 10,000 people using hydrogel contact lenses for daily wear per year [9, 48, 52]. Slightly higher rates were recently reported as well [23]. Daily wear of rigid gas permeable (GP) contact lenses is associated with a much reduced risk of MK [9, 36, 44]. The rate of MK with either high Dk silicone hydrogel or GP contact lenses used for extended wear is still in question, but is expected to be less than that found with hydrogel lenses - although it may remain higher than that encountered with daily wear of the same lenses [43, 45].

#### 1.2.2 Contact Lens Care

It seems intuitive that poor contact lens care and hygiene might lead to increased microbial contamination of contact lenses, solutions, and cases. It also seems intuitive that an increased load of micro-organisms in the local environment, available for transfer from the environment to the eye during contact lens "cleaning" and handling, might increase the risks of MK. This particular paradigm of infection may indeed be supported somewhat by data in the case of acanthamoebic infection [16], but - while theoretically attractive - may not be totally supported in the case of bacterial MK [15, 40]. Nonetheless, most clinicians believe that, in general, both extended wear and poor contact lens care increase the risk of MK.

#### 1.2.3 Role of Hypoxia

All rigid contact lenses were made of nonoxygenpermeable polymethyl methacrylate in the mid-1970s, and early hydrogel lenses all had modest oxygen transmissibilities (known as Dk/t). Hypoxia was a very common complication of contact lens use [21, 22, 28, 53].

It is now clear that maintaining oxygen tension in the tear layer (over the metabolizing anterior corneal surface) of about 100 mmHg will preclude physiological hypoxia, although various studies have placed this value between about 20 and 125 mmHg [7, 22, 49].

Most of the modern modest Dk GP and hydrogel contact lenses now available, and particularly those very high Dk silicone hydrogel and GP manufactured from materials with oxygen transmissibility of about 100 Fatt Dk units or greater, generally do not cause clinically observable corneal hypoxia under daily wear conditions [6, 7, 21]. Lenses made from these very high Dk GP and silicone hydrogel materials also appear to provide adequate corneal oxygenation when used on an extended wear basis, even though the precise level of contact lens oxygen permeability necessary to preclude hypoxia under such conditions has yet to be established [7].

When there is clear clinical evidence of hypoxic corneal changes (e.g., epithelial or stromal edema [28], corneal pannus greater than approximately 2 mm unrelated to 3/9 stain [8]), conjunctival and limbal hyperemia (e.g., injection) [47], myopic "creep" [17], or suspected "corneal exhaustion syndrome" [56], the clinician should adjust the contact lens wear schedule or change the contact lens material or design to enhance the availability of oxygen to the anterior corneal surface. Because of all these complications as well as the suspicion that hypoxia increases the risk of MK, increasing contact lens Dk/t is believed to be advantageous.

#### 1.2.4 Role of Immunology

Immunology has been defined as the collection of integrated systems by which an organism defends itself from the assault of micro-organisms. There are both active and passive defenses, including leukocytes, antibodies, skin, and tears. There is a balance at work in that any infection, for example MK, only occurs when the pathogenicity of the microbe overwhelms the immunological defenses of the host.

A major question is whether addressing hypoxia alone is sufficient to reduce the incidence and prevalence of MK during contact lens extended wear to the rate found with daily wear. Several potential paths by which contact lensdriven hypoxia may suppress the immunological defenses of the anterior eye have been proposed. Contact lens wear and hypoxia may cause epithelial defects directly or indirectly (secondary to purely mechanical problems, e.g., abrasions, microtrauma, decreased mitosis and/or adhesion) [4, 20, 35], and any break in the integrity of the ocular surface is known to enhance bacterial infection. Another, more recent, hypothesis is that hypoxia causes changes in the corneal epithelial cell membrane, increasing the potential for bacterial binding [50].

Others believe that there are changes in the closed-eye state, particularly in the constituents of the tears [51], and/or in the ability of the corneal epithelium to resist bacterial invasion [18], beyond hypoxia alone, that makes closed-eye contact lens wear more likely to interrupt the normal immunological defenses of the anterior eye than open-eye contact lens wear. Tears usually

contain multiple antibacterial factors, including lysozyme, lactoferrin, lipocalin, vitronectin, betalysin, phospholipase A2, complement, immunoglobulins, mucins (which may entrap microorganisms for mechanical removal) [24, 51, 59] and occasional leukocytes, all potential targets for disruption. Both local and systemic disease (like Sjögren's syndrome and diabetes) and local or systemic immunosuppression (topical steroid use or HIV infection) are known to disturb one or more aspects of the protective nature of normal tears and/or the ocular surface to increase the risk of corneal infection. Closed-eye contact lens wear, with or without hypoxia, may act similarly. Investigators are actively studying the basic interactions between host and bacteria [11, 18], hoping to unravel the mechanism(s) that allow bacterial invasion of corneal epithelial cells with the goal of discovering ways in which to interrupt these processes.

This is a rapidly evolving research area directed toward enhancing safe contact lens daily and extended wear by assisting the normal immunological defenses of the anterior eye and/or by decreasing the ability of the micro-organisms to attack ocular tissues.

#### 1.2.5 Role of Orthokeratology

Orthokeratology (OK) is the planned use of rigid contact lenses to deliberately modify the anterior corneal surface to neutralize refractive error. OK has been practiced for about half a century, and while efficacy has been questioned by some clinicians, safety has always appeared acceptable.

Recent innovations in rigid GP contact lens manufacture has led to the development of socalled "reverse geometry" contact lenses (with secondary curves steeper rather than flatter than the lens base curve) and the use of these lenses has clearly demonstrated increased efficacy in the OK treatment protocol. At the same time, however, some advocates of this procedure have suggested that OK lenses should be used during sleep (extended wear) as so-called "retainer" lenses and removed during open-eye experience.

This change in lens wear paradigm has unfortunately been accompanied by a number of case reports of subsequent MK in patients treated with unknown OK rigid lenses outside North America and Europe, initially dismissed as "unusual." Recently, reports of MK with OK using known GP lenses of modern designs inside the USA [31, 34] have reached the literature. Is this possible increase in risk more associated just with increased numbers of wearers due to increased popularity, or increased epithelial damage by mechanical pressure on the corneal apex due to OK treatment – or perhaps just closed-eye use as discussed above rather than any specific mechanical or lens design feature of OK? Evolving research will undoubtedly address these questions.

#### 1.3 Microbes

#### 1.3.1 Bacterial Infections

Bacterial corneal infections associated with contact lens (particularly extended) wear are usually attributable to Gram-negative Pseudomonas aeruginosa, and less commonly to both Gram-positive Staphylococcus aureus and Staphylococcus epidermidis [40, 57]. Other bacteria, both Grampositive and Gram-negative (such as Proteus, Serratia, Bacillus sp., etc.), are also occasionally cultured from such lesions. For contrast, noncontact lens-associated corneal infections are usually more commonly Gram-positive (Staphylococcus aureus or Streptococcus pneumonia), Gram-negative Moraxella sp., or viral (Herpes). Climate and other environmental factors clearly play a role in the epidemiology of noncontact lens-related corneal infection as well, with more fungal keratitis reported from both the south-eastern United States as well as following direct (e.g., traumatic) exposure to plant matter.

Contact lens-related bacterial corneal infection has been primarily associated with wearing rigid or hydrogel contact lenses of limited oxygen transmissibility through one or more sleep cycles (extended or continuous wear) [9, 12, 29, 40, 48, 52, 57, 61]. Some have suggested that hypoxia alone is necessary and sufficient to account for all or most bacterial corneal infections that occur during contact lens wear, but this has not been proven.

Gram-negative bacterial infections tend to be more aggressive, leading to stromal necrosis with substantial discharge (Fig. 1.1), and Gram-posi-



Fig. 1.1 Pseudomonas keratitis following contact lens wear: note both mucopurulent discharge and corneal ring abscess

tive bacterial lesions tend to be less aggressive leading to less discharge and stromal melting, but history and clinical appearance alone may be misleading. Annular corneal infiltrates are seen not only late in the course of acanthamoebic keratitis and early in severe pseudomonas-related corneal infections, but also in the form of an immune ring in herpetic and fungal corneal disease, and sterile anesthetic abuse as well. Results of smears and cultures, and clinical course, are often needed to develop a specific microbiologic diagnosis and hence an appropriate treatment protocol.

Poor compliance with contact lens care procedures leading to enhanced microbiological contamination of lens care solutions, cases, etc., also appears to be a major risk factor for microbial infection, possibly bacterial, but especially due to *Acanthamoeba* [16, 40].

#### 1.3.2 Protozoal Infections

The clinician should always consider the possibility of *Acanthamoeba* species infections in any contact lens-related MK, especially in cases of chronic disease with initially negative culture results that fail to respond to antibiotic therapy. Clinical suspicion should be increased when the patient reports extreme ocular pain and/or a history of exposing his or her contact lenses to nonsterile water, or when an unusual dendritic epitheliopathy (reminiscent of herpetic epithelial disease; Fig. 1.2) or peripheral corneal radial neuropathy (Fig. 1.3) is observed [27, 41, 42, 54].

Acanthamoeba infections can be particularly challenging to confirm by laboratory investigations. Special culture techniques are available, such as culturing on nonnutrient agar coated with an *E-coli* overlay, but corneal biopsy is often necessary. Amoeba cell walls stained with calcofluor white will be seen when examined with fluorescent microscopy. Confocal microscopy can be useful for the diagnosis of corneal infections with *Acanthamoeba*; unfortunately, the limited availability of such instruments in the USA makes cultures and biopsies the more commonly employed diagnostic tests.

Misdiagnosis and medical failures in the treatment of *Acanthamoeba* infections are common.

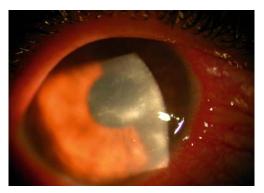



Fig. 1.2 Acanthamoeba keratitis: dendritiform lesion that often leads to misdiagnosis



Fig. 1.3 Acanthamoeba keratitis: radial perineuritis

#### 1.3.3 Fungal Infections

Fungal corneal infections (keratomycosis) have been extremely rare among cosmetic contact lens wearers, with the exception of an unusual worldwide collection of Fusarium keratitis possibly related to one brand of soft lens solution in 2006 (under investigation at the time of writing). Most previous cases reported in the literature have involved the use of contact lenses for treatment of aphakia, bandage use of contact lenses, or concomitant chronic treatment with topical steroids in patients suffering from concurrent ocular disease (e.g., neurotrophic epithelial defects, diabetes, trauma) [26, 60]. Fungal corneal infections are often distinguished as "fluffy"-appearing infiltrates with feathered borders, associated with separate satellite lesions. It is important to note that atypical mycobacterium and Acanthamoeba infections often mimic fungal corneal ulcers and vice versa.

#### 1.3.4 Viral Infections

Adenoviral and herpetic viral corneal infections can occur during contact lens wear. No causative association has been uncovered for such viral infections. Round subepithelial corneal infiltrates and follicular conjunctivitis can occur with both infections, and discharge tends to be more watery than mucopurulent as in bacterial infections. Both epithelial dendrites and decreased corneal sensitivity are common signs of herpetic infection in particular. Contact lens wear should be discontinued during viral infections unless the contact lens is being used in a treatment protocol. Adenovirus infection is usually successfully managed by supportive therapy such as tear supplements and topical decongestants. Effective topical (Viroptic) and oral antiviral agents are available for the treatment of herpetic eye disease. The clinician who observes apparent herpetic keratitis in association with the use of contact lenses, however, should always consider the possibility of an *Acanthamoeba* infection masquerading as herpes.

It is prudent to consider discarding contact lenses, especially inexpensive disposable soft lenses of any type, that have been worn during an active viral infection and then dispense new contact lenses once the infection has resolved. More expensive customized (primarily rigid GP but also occasionally soft) lenses should be disinfected using the appropriate techniques prior to advising the patient that contact lens wear can be resumed.

Although both the human immunodeficiency virus (HIV) and the prions that cause Creutzfeldt-Jakob disease have been isolated from human ocular tissues (e.g., cornea, conjunctiva, and tears), no reports of disease transmission have been reported from ocular contact. Nonetheless, it is prudent to minimize risks to both patients and clinicians by appropriate disinfection of diagnostic instrumentation, and particularly disinfection (or discarding) of diagnostic contact lenses (whether disease is known, suspected, or unsuspected).