Applied and Numerical Harmonic Analysis

Akram Aldroubi, Carlos Cabrelli Stephane/Jaffard, Ursula Molter Editors

New Trends in Applied Harmonic Analysis

Sparse Representations, Compressed Sensing, and Multifractal Analysis
(2) Birkhäuser

Applied and Numerical Harmonic Analysis

Series Editor
John J. Benedetto
University of Maryland
College Park, MD, USA

Editorial Advisory Board

Akram Aldroubi
Vanderbilt University
Nashville, TN, USA

Douglas Cochran

Arizona State University
Phoenix, AZ, USA

Hans G. Feichtinger
University of Vienna
Vienna, Austria

Christopher Heil

Georgia Institute of Technology
Atlanta, GA, USA
Stéphane Jaffard
University of Paris XII
Paris, France

Jelena Kovačević

Carnegie Mellon University
Pittsburgh, PA, USA

Gitta Kutyniok

Technische Universität Berlin
Berlin, Germany
Mauro Maggioni
Duke University
Durham, NC, USA

Zuowei Shen
National University of Singapore
Singapore, Singapore

Thomas Strohmer

University of California
Davis, CA, USA

Yang Wang
Michigan State University
East Lansing, MI, USA

Akram Aldroubi • Carlos Cabrelli Stephane Jaffard • Ursula Molter Editors

New Trends in Applied Harmonic Analysis

Sparse Representations, Compressed Sensing, and Multifractal Analysis

Akram Aldroubi
Department of Mathematics
Vanderbilt University
Nashville, TN, USA
Stephane Jaffard
UFR de Sciences et Technologie
Universite Paris Est Creteil
Creteil Cedex, Paris, France

Carlos Cabrelli
Depto. de Matemática
Univ. de Buenos Aires
IMAS - UBA/CONICET
Buenos Aires, Argentina

Ursula Molter
Depto. de Matemática
Univ. de Buenos Aires
IMAS, UBA/CONICET
Buenos Aires, Argentina

ISSN 2296-5009
ISSN 2296-5017 (electronic)
Applied and Numerical Harmonic Analysis
ISBN 978-3-319-27871-1
ISBN 978-3-319-27873-5 (eBook)
DOI 10.1007/978-3-319-27873-5
Library of Congress Control Number: 2016933857
Mathematics Subject Classification (2010): 42-XX, 28A80, 94 A8, 94 A12
Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper
This book is published under the trade name Birkhäuser
The registered company is Springer International Publishing AG Switzerland

ANHA Series Preface

The Applied and Numerical Harmonic Analysis (ANHA) book series aims to provide the engineering, mathematical, and scientific communities with significant developments in harmonic analysis, ranging from abstract harmonic analysis to basic applications. The title of the series reflects the importance of applications and numerical implementation, but richness and relevance of applications and implementation depend fundamentally on the structure and depth of theoretical underpinnings. Thus, from our point of view, the interleaving of theory and applications and their creative symbiotic evolution is axiomatic.

Harmonic analysis is a wellspring of ideas and applicability that has flourished, developed, and deepened over time within many disciplines and by means of creative cross-fertilization with diverse areas. The intricate and fundamental relationship between harmonic analysis and fields such as signal processing, partial differential equations (PDEs), and image processing is reflected in our state-of-theart ANHA series.

Our vision of modern harmonic analysis includes mathematical areas such as wavelet theory, Banach algebras, classical Fourier analysis, time-frequency analysis, and fractal geometry, as well as the diverse topics that impinge on them.

For example, wavelet theory can be considered an appropriate tool to deal with some basic problems in digital signal processing, speech and image processing, geophysics, pattern recognition, biomedical engineering, and turbulence. These areas implement the latest technology from sampling methods on surfaces to fast algorithms and computer vision methods. The underlying mathematics of wavelet theory depends not only on classical Fourier analysis but also on ideas from abstract harmonic analysis, including von Neumann algebras and the affine group. This leads to a study of the Heisenberg group and its relationship to Gabor systems and of the metaplectic group for a meaningful interaction of signal decomposition methods.

The unifying influence of wavelet theory in the aforementioned topics illustrates the justification for providing a means for centralizing and disseminating information from the broader, but still focused, area of harmonic analysis. This will be a key role of ANHA. We intend to publish with the scope and interaction that such a host of issues demands.

Along with our commitment to publish mathematically significant works at the frontiers of harmonic analysis, we have a comparably strong commitment to publish major advances in applicable topics such as the following, where harmonic analysis plays a substantial role:

> Biomathematics, bioengineering, and biomedical signal processing; Communications and RADAR;
> Compressive sensing (sampling) and sparse representations; Data science, data mining, and dimension reduction; Fast algorithms; Frame theory and noise reduction; Image processing and super-resolution;

Machine learning;
Phaseless reconstruction; Quantum informatics; Remote sensing; Sampling theory; Spectral estimation; Time-frequency and Time-scale analysis-Gabor theory and Wavelet theory

The above point of view for the ANHA book series is inspired by the history of Fourier analysis itself, whose tentacles reach into so many fields.

In the last two centuries Fourier analysis has had a major impact on the development of mathematics, on the understanding of many engineering and scientific phenomena, and on the solution of some of the most important problems in mathematics and the sciences. Historically, Fourier series were developed in the analysis of some of the classical PDEs of mathematical physics; these series were used to solve such equations. In order to understand Fourier series and the kinds of solutions they could represent, some of the most basic notions of analysis were defined, e.g., the concept of "function." Since the coefficients of Fourier series are integrals, it is no surprise that Riemann integrals were conceived to deal with uniqueness properties of trigonometric series. Cantor's set theory was also developed because of such uniqueness questions.

A basic problem in Fourier analysis is to show how complicated phenomena, such as sound waves, can be described in terms of elementary harmonics. There are two aspects of this problem: first, to find, or even define properly, the harmonics or spectrum of a given phenomenon, e.g., the spectroscopy problem in optics; second, to determine which phenomena can be constructed from given classes of harmonics, as done, for example, by the mechanical synthesizers in tidal analysis.

Fourier analysis is also the natural setting for many other problems in engineering, mathematics, and sciences. For example, Wiener's Tauberian theorem in Fourier analysis not only characterizes the behavior of the prime numbers but also provides the proper notion of spectrum for phenomena such as white light; this latter process leads to the Fourier analysis associated with correlation functions in filtering and prediction problems, and these problems, in turn, deal naturally with Hardy spaces in the theory of complex variables.

Nowadays, some of the theory of PDEs has given way to the study of Fourier integral operators. Problems in antenna theory are studied in terms of unimodular
trigonometric polynomials. Applications of Fourier analysis abound in signal processing, whether with the fast Fourier transform (FFT), or filter design, or the adaptive modeling inherent in time-frequency-scale methods such as wavelet theory.

The coherent states of mathematical physics are translated and modulated Fourier transforms, and these are used, in conjunction with the uncertainty principle, for dealing with signal reconstruction in communications theory. We are back to the raison d'être of the ANHA series!

College Park, MD, USA
John J. Benedetto

Foreword

The CIMPA13 Conference which took place in August 5-16, 2013, in Mar de Plata, Argentina, was entitled New Trends in Applied Harmonic Analysis Sparse Representations, Compressed Sensing and Multifractal Analysis. The event took place in a friendly atmosphere, encouraging interaction between speakers and participants, among them PhD students, postdocs, and senior scientists. Unfortunately not all the main speakers have been able to provide a written version of their presentation, but in many cases one may find slides of more formal talks through the Internet. General information about the conference can be found at

> http://www.nuhag.eu/cimpa13

The topics of the articles which appear in this volume reflect the diversity of recent developments in harmonic analysis, both at the level of pure mathematics and applications. Some contributions concern interesting mathematical questions arising from a systematic investigation of structures which have not been sufficiently well explored so far, and others - such as sparsity with respect to non-orthogonal systems - are part of a current trend, related to compressed sensing.

To be more precise, let us take a look at the individual contributions: The first three chapters describe problems related to multifractal analysis (Kathryn E. Hare, Stephane Seuret, and Yanick Heurteaux).

We then find two chapters thematizing the sparsity of wavelet coefficients. In the first contribution (by Vladimir Temlyakov), Lebesgue-type inequalities for greedy approximations are discussed, demonstrating that many of the well-known expansions have the following nice property: Given the set of, say, wavelet coefficients of a given function in some Besov space (because these spaces can be characterized by weighted summability conditions with respect to a given wavelet system), it is a good strategy (not only in the Hilbert spaces setting) to just take more and more of the "large coefficients" in order to approximate the function, in fact with an optimal rate.

In the second chapter in this direction, written by Eugenio Hernandez and María de Natividade, we learn some results on nonlinear approximation for wavelet bases in weighted function spaces. Here Bernstein- and Jackson-type theorems for
weighted L^{p}-spaces are provided, showing that wavelet expansions are doing a good job for the approximation of functions in this setting.

The chapter provided by Pete Casazza and Janet C. Tremain discusses the consequences of the Marcus/Spielman/Srivasta solution to the Kadison-Singer problem in the context of frame theory with some first glimpse on the consequences within harmonic analysis.

The chapter "Model Sets and New Versions of Shannon's Sampling Theorem" by Basarab Matei presents some interesting insight on universal sampling sets, the socalled model sets and their relations to quasicrystals. While the classical Shannon theorem describes how one can recover a band-limited signal, given the spectral support Ω (the support of \hat{f}), with a formula which obviously depends on the choice of this set, the new approach discusses situations where the same sampling set can be used (with a more complicated recovery algorithm) for a large variety of sets Ω, as long as their measure is not too big.

The section written by Xianfeng Hu, Yang Wang, and Qiang Wu treats a somewhat unusual and therefore very interesting topic: Stylometry and Mathematical Study of Authorship.

The final contribution, entitled "Thoughts on Numerical and Conceptual Harmonic Analysis," provided by the author of this introduction gives a glimpse on a problem within the community of harmonic analysts which should be given a bit more attention: the interaction between principles of abstract (or as he proposes conceptual harmonic analysis) and those who are involved in numerical resp. computational harmonic analysis. While the first group is searching for general structures, the second one is looking for efficient algorithms and their implementation, often using FFT-based algorithms. The aspect lost in this separation of duties is the connection between the two approaches, the question, which function spaces are suitable to describe the errors made by moving from the continuous, to the discrete, and then of course to the finite setting. The article is just providing a few thoughts in this direction and suggests to pay more attention to it, not just in the spirit of function spaces or pure functional analysis but more in the sense of constructive approximation theory, with quantitative error bounds, estimates for the required problem size if one needs a guaranteed estimate for the size of the error.

Thus in some sense the article describes the ideas and goals behind the material presented by the author during the conference in a more concrete but less reflected format. Important parts of those presentations are available in the form of PDF files from www.nuhag.eu.

Overall it is clear from this volume that harmonic analysis at large is and will provide a wide variety of interesting mathematical problems and that research in this direction will continue to be fruitful and rewarding for those interested in mathematical analysis in general, be it abstract or more application oriented.

Preface

This book evolved from the written notes that were distributed to the students who participated in the CIMPA school, New Trends in Applied Harmonic Analysis: Sparse Representations, Compressed Sensing and Multifractal Analysis, which took place in Mar del Plata (Argentina) in August 2013.

This event was motivated by the recent interactions which developed between harmonic analysis and signal and image processing during the last 10 years. During that time, several technological deadlocks were solved through the resolution of deep theoretical problems in harmonic analysis. The purpose of this school was to focus on two particularly active areas which are representative of such advances: multifractal analysis and compressed sensing. The courses were taught by leaders in these areas and covered both theoretical aspects and applications. Most of the attendance was composed of PhD students and postdocs from diverse backgrounds (mathematics, signal and image processing, etc.), and the corresponding chapters of this book reflect the pedagogical care of the lecturers, in particular in the careful treatment of all needed prerequisites, and the illustration of the developments of each topic by several examples. Another original feature of this book is that some subjects overlap, with views taken from different perspectives, thus offering an indepth picture of these scientific areas.

Let us be more specific. Multifractal analysis offers new tools of classification for signals and images derived from their scaling invariance properties. The part of the book concerning this subject include the contribution of K. Hare, "Multifractal Analysis of Cantor-like Measures," which deals with basics of fractal analysis and then focuses on the key example of Cantor-like measures. The contribution of Y. Heurteaux "An introduction to Mandelbrot cascades" goes one step further in modeling complexity and deals with the multifractal measures supplied by multiplicative cascades; a careful treatment of these examples is motivated both by the historical role played by these measures as models for the dissipation of energy in turbulent fluids and by the importance that they have recently acquired in other areas of mathematics (fragmentation, coalescence, harmonic measure associated with fractal sets, Schramm-Loewner evolution, etc.). Finally, the contribution of Stéphane Seuret "Multifractal analysis and Wavelets" deals with the extensions that these
ideas have known in the setting of functions. The main tool here is wavelet analysis, a tool which is now prevalent in applied analysis and reappears in several other chapters of this book. Here its role is to yield a characterization of both pointwise and global regularity of functions. This property explains the success of wavelets in applied multifractal analysis, since this subject can be seen as unfolding the relationships between pointwise and global regularity and then deriving practical classification tools from these regularity characteristics.

Recently, many powerful techniques have been developed emphasizing the role of sparsity in signal and image processing. These new methods have had a substantial impact in areas like sampling, data compression and representation, atomic decompositions, wavelets, frames, and high-dimensional data analysis. In particular compressed sensing represents a new paradigm in signal and image processing, allowing to reconstruct compressible data from the knowledge of an underdetermined system, through an ℓ^{1} minimization. The mathematics behind these methods is rich and sophisticated and presents new challenges. The chapters by Temlyakov "Lebesgue-type Inequalities for Greedy Approximation" and Hernández et. al "Results on Nonlinear Approximation for Wavelet Bases in Weighted Function Spaces" are excellent examples of the advances in this area.

On another note, just before the school took place, the Kadison-Singer conjecture was solved, and since this had deep impact on harmonic analysis - because of the implications with respect to the decomposition of frames into a finite number of Riesz bases Feichtinger conjecture - Pete Casazza gave a really nice lecture about the diverse attempts in the solution and agreed to write a chapter about all the implications.

Note that the contribution of Y. Heurteaux was not part of the courses taught at the CIMPA school of August 2013, but grew from the notes of another course taught at a fractal conference that took place in Porquerolles (France) in September 2013.

Nashville, TN, USA
Buenos Aires, Argentina
Paris, France
Buenos Aires, Argentina
October 2015

Akram Aldroubi
Carlos Cabrelli
Stephane Jaffard
Ursula Molter

Acknowledgments

We acknowledge support from the following institutions; without their help, the meeting would not have been possible!

- CIMPA, International Center for Pure and Applied Mathematics
- Université Paris Est, Créteil, Val de Marne, FRANCE
- CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, ARGENTINA
- MinCyT, Ministerio de Ciencia y Tecnología, ARGENTINA
- IMU, International Mathematical Union

Contents

1 Multifractal Analysis of Cantor-Like Measures 1
Kathryn E. Hare
1.1 Introduction 1
1.2 Notation and Basic Facts 2
1.2.1 The Classical Cantor Set and Measure 2
1.2.2 Cantor Sets and Measures with Varying Ratios of Dissection 4
1.2.3 Hausdorff Dimension 5
1.3 Multifractal Analysis of p-Cantor Measures 6
1.3.1 Local Dimension 6
1.3.2 Multifractal Spectrum 9
1.4 Isolated Points in the Multifractal Spectrum 14
1.4.1 Isolated Points in the Spectrum of Convolutions of Cantor Measures 14
1.4.2 Isolated Points in the Spectrum of Convolutions of General Measures 15
1.5 Credits 17
References 18
2 Multifractal Analysis and Wavelets 19
Stéphane Seuret
2.1 Introduction 19
2.2 Recalls on Wavelets and Geometric Measure Theory 24
2.2.1 Wavelets 24
2.2.2 Localization of the Problem 25
2.2.3 Hausdorff and Box Dimension 26
2.2.4 Local Dimensions of Measures 28
2.2.5 Legendre Transform 29
2.3 Pointwise Hölder Exponent 30
2.3.1 Characterization by Decay Rate of Wavelet Coefficients 30
2.3.2 Characterization by Decay Rate of Wavelet Leaders 36
2.3.3 Prescription of Hölder Exponents 38
2.3.4 Other Exponents 41
2.3.5 An Example 42
2.4 Multifractal Formalism 43
2.4.1 The Intuition of U. Frisch and G. Parisi 43
2.4.2 A Rigorous Formulation of the Multifractal Formalism 45
2.4.3 Upper Bounds for the Multifractal Spectrum of Functions in Classical Function Spaces 47
2.4.4 Another Multifractal Spectrum: The Large Deviations Spectrum 51
2.5 Generic Results for the Multifractality of Functions 52
2.5.1 Hölder Spaces 53
2.5.2 Besov Spaces 54
2.5.3 Measures (or Monotonic Functions) 57
2.5.4 Traces, Slices, Projections 58
2.6 Some Examples of Multifractal Wavelet Series 59
2.6.1 Hierarchical Wavelet Series 59
2.6.2 Lacunary Wavelet Series 60
2.6.3 Thresholded Wavelet Series 62
References 64
3 An Introduction to Mandelbrot Cascades 67
Yanick Heurteaux
3.1 Introduction 67
3.2 Binomial Cascades 69
3.2.1 Multifractal Analysis of Binomial Cascades 70
3.2.2 Binomial Cascades Satisfy the Multifractal Formalism 71
3.2.3 Back to the Existence of Binomial Cascades 72
3.3 Canonical Mandelbrot Cascades: Construction and Non-degeneracy Conditions 73
3.3.1 Construction 73
3.3.2 Examples 75
3.3.3 The Fundamental Equations 76
3.3.4 Non-degeneracy 77
3.4 On the Existence of Moments for the Random Variable Y_{∞} 85
3.5 On the Dimension of Non-degenerate Cascades 88
3.6 A Digression on Multifractal Analysis of Measures 94
3.7 Multifractal Analysis of Mandelbrot Cascades: An Outline 96
3.7.1 Simultaneous Behavior of Two Mandelbrot Cascades 98
3.7.2 Application to the Multifractal Analysis of Mandelbrot Cascades 100
3.7.3 To Go Further 101
References 104
4 Lebesgue-Type Inequalities for Greedy Approximation 107
Vladimir Temlyakov
4.1 Introduction 107
4.2 The Trigonometric System 113
4.3 The Wavelet Bases 116
4.4 Lebesgue-Type Inequalities: General Results 122
4.5 Proofs 127
4.6 Examples 132
4.7 Discussion 138
References 141
5 Results on Non-linear Approximation for Wavelet Bases in Weighted Function Spaces 145
Eugenio Hernández and Maria de Natividade
5.1 Introduction 145
5.2 Non-linear Approximation: Definitions and First Results 148
5.3 Weights in \mathbb{R}^{d} 152
5.4 Thresholding Greedy Algorithm for the Haar Wavelet in Weighted Lebesgue Spaces 156
5.5 Thresholding Greedy Algorithm for Wavelet Bases in Weighted Triebel-Lizorkin Spaces 159
5.6 Thresholding Greedy Algorithm for Wavelet Bases in Weighted Orlicz Spaces 166
5.7 Approximation Spaces: General Results 175
5.8 Approximation Spaces for Wavelet Bases in Weighted Spaces 181
References 187
6 Consequences of the Marcus/Spielman/Srivastava Solution of the Kadison-Singer Problem 191
Peter G. Casazza and Janet C. Tremain
6.1 Introduction 191
6.2 Frame Theory 194
6.3 Marcus/Spielman/Srivastava and Weaver's Conjecture 197
6.4 Marcus/Spielman/Srivastava and the Paving Conjectures 198
6.5 Equivalents of the Paving Conjecture 201
6.6 Paving in Harmonic Analysis 204
6.7 "Large" and "Decomposable" Subspaces of \mathscr{H} 206
6.8 Open Problems 208
6.9 Acknowledgement 209
References 211
7 Model Sets and New Versions of Shannon Sampling Theorem 215
Basarab Matei
7.1 Introduction 215
7.2 Almost Periodic Functions and Measures 216
7.2.1 Almost Periodic Functions 216
7.2.2 Almost Periodic Measures 221
7.3 Generalized Almost Periodic Functions and Measures 227
7.3.1 Generalized Almost Periodic Measures 237
7.4 Diffraction Measures 242
7.5 Pisot-Vijayaraghavan Numbers and Salem Numbers 245
7.6 Additive Properties of Almost Lattices 245
7.7 Almost Lattices and Model Sets 247
7.8 Diophantine Approximations and Harmonious Sets 253
7.9 More on Harmonious Sets 260
7.10 Coherent Sets of Frequencies 261
7.11 Poisson Summation Formula and Model Sets 265
7.12 Algebras of Generalized Almost Periodic Measures 267
7.13 Model Sets and Irregular Sampling 267
7.14 An Open Problem 273
7.15 An Improvement 273
7.15.1 Wealthy Frames 275
7.16 Conclusion 276
References 278
8 Stylometry and Mathematical Study of Authorship 281
Xianfeng Hu, Yang Wang, and Qiang Wu
8.1 Introduction 282
8.2 Chrono-Divide and Methodology 283
8.2.1 Initial Stylometric Feature Extraction 285
8.2.2 Data Preparation 285
8.2.3 Feature Subset Selection 286
8.2.4 Data Analysis 287
8.2.5 The Algorithm 287
8.3 Case Study: Analysis of Dream of the Red Chamber 288
8.3.1 Background 288
8.3.2 Separability of the Chapters by Cao and Gao 290
8.3.3 Non-separability of the First 80 Chapters 293
8.3.4 Analysis of Chapters 81-120: Style Change over Time 294
8.3.5 Comparison with Continued Dream of the Red Chamber 295
8.4 Analysis of Micro and Other Books 296
8.4.1 Chrono-Divide of Micro 296
8.4.2 Analysis of the Three Chinese Classical Novels 297
8.5 Conclusions 299
References 299
9 Thoughts on Numerical and Conceptual Harmonic Analysis 301
Hans G. Feichtinger
9.1 Classical Fourier Analysis Seen Critical 302
9.2 Sociology of Fourier Users 304
9.3 What We Find in the Applied Literature 306
9.4 A Set of Questions 308
9.5 Experimental Mathematics 309
9.5.1 Learning Fourier Analysis 311
9.6 Fourier Analysis over Finite Groups 312
9.6.1 DFT in Mathematical Notation 313
9.6.2 Comparison with Polynomial Evaluation 315
9.7 Poisson's Formula 316
9.8 Transferring Data Between Groups 318
9.8.1 From Groups to Linear Algebra (and Back?) 320
9.9 Time-Frequency Analysis and Gabor Analysis 321
9.9.1 The Banach Gelfand Triple and w^{*}-Convergence 324
9.10 Summary 325
References 326

List of Participants

CIMPA School: New Trends of Applied Harmonic Analysis

August 5-16, 2013, Mar del Plata, Argentina

1. Abry, Patrice, CNRS - ENS Lyon, France
2. Acinas, Sonia, UNLPam - UNSL, Argentina
3. Actis, Marcelo, IMAL (CONICET-UNL), Argentina
4. Agora, Elona, CONICET, Argentina
5. Aldroubi, Akram, Vanderbilt University, United States
6. Aimar, Hugo, IMAL-UNL, Argentina
7. Alzamendi, Gabriel, FI-UNER/CONICET, Argentina
8. Anderson, Alejandro, Universidad Nacional del Litoral - FIQ, Argentina
9. Antezana, Jorge, UNLP-IAM, Argentina
10. Arias, Maria Laura, IAM, Argentina
11. Balan, Radu, University of Maryland, United States
12. Barbieri, Davide, CAMS, EHESS-CNRS, Paris, France
13. Beltritti, Gaston, IMAL (CONICET-UNL), Argentina
14. Benedetto, John, Norbert Wiener Center, United States
15. Blanchard, Jeff, Grinnell College, United States
16. Bonnefoy, Antoine, Aix-Marseille-Université, France
17. Cabrelli, Carlos, IMAS-UBA/CONICET, Argentina
18. Caiafa, Cesar, IAR-CONICET / UBA, Argentina
19. Calderon Arce, Cindy, Instituto Tecnológico de Costa Rica, Costa Rica
20. Carneiro, Emanuel, IMPA, Brazil
21. Casazza, Peter, University of Missouri, United States
22. Colominas, Marcelo Alejandro, FI-UNER / CONICET, Argentina
23. De Hoop, Maarten, Purdue University, United States
24. De Napoli, Pablo Luis, Universidad de Buenos Aires, Argentina
25. De Pasquale, Horacio, Universidad Nacional de Mar del Plata, Argentina
26. Di Iorio, Maria Eugenia, CONICET, Argentina
27. Esser, Celine, University of Liege, Belgium
28. Ferreira, Felipe, IMPA, Brazil
29. Finder, Renand, IMPA, Brazil
30. Flandrin, Patrick, ENS-Lyon, France
31. Foucart, Simon, University of Georgia, United States
32. Garrigos, Gustavo, Universidad de Murcia, Spain
33. García, Ignacio, Universidad Nac. de Mar del Plata, Argentina
34. Gomez, Ivana, IMAL, Argentina
35. González, Alfredo, Univ. Nac. Mar del Plata, Argentina
36. Goyal, Kavita, Indian Institute of Technology Delhi, India
37. Gurley, Colton, University of Louisville, USA
38. Guzmán, Oscar, Universidad Nacional, Colombia
39. Hare, Kathryn, University of Waterloo, Canada
40. Heil, Christopher, Georgia Tech, United States
41. Heineken, Sigrid, Universidad de Buenos Aires, Argentina
42. Hernández, Eugenio, Universidad Autónoma de Madrid, Spain
43. Jaffard, Stéphane, University Paris Est, France
44. Jahan, Qaiser, ISI Kolkata, India
45. Kang, Sinuk, National Institute for Mathematical Sciences, Republic of Korea
46. Keiper, Sandra, Technische Universität Berlin, Germany
47. Kovak, Federico, Universidad Nacional de La Pampa, Argentina
48. Kutyniok, Gitta, Technische Universität Berlin, Germany
49. Leonarduzzi, Roberto Fabio, Universidad Nacional de Entre Ríos, Argentina
50. Li, Shidong, San Francisco State University, United States
51. Lyubarskii, Yurii, NTNU, Norway
52. Malinnikova, Eugenia, NTNU, Norway
53. Massey, Pedro, FCE-UNLP and IAM - CONICET, Argentina
54. Massopust, Peter, Helmholtz Zentrum Muenchen and Technische Universitaet Muenchen, Germany
55. Matei, Basarab, LAGA, France
56. Molina, Sandra, Universidad Nac. de Mar del Plata, Argentina
57. Molter, Ursula, IMAS-UBA/CONICET, Argentina
58. Moraes, Jean, UFRGS, Brazil
59. Morillas, Patricia Mariela, Instituto de Matemática Aplicada San Luis (UNSLCONICET), Argentina
60. Morvidone, Marcela, UNSAM, Argentina
61. Moure, Ma. Del Carmen, Univ. Nac. De Mar del Plata, Argentina
62. Mosquera, Carolina, UBA, Argentina
63. Muschietti, Maria Amelia, Universidad Nacional de La Plata, Argentina
64. Obermeier, Axel, ETH Zurich, Switzerland
65. Oliveira, Lucas da Silva, UFPEL, Brazil
66. Olivo, Andrea, Universidad Nacional del Sur, Argentina
67. Pajor, Alain, Marne-la-Valle, France
68. Paternostro, Victoria, TU Berlin, Germany
69. Prasad, Srijanani Anurag, Indian Statistical Institute, Delhi, India
70. Quintero, Alejandro, Universidad de Mar del Plata, Argentina
71. Ramos, Wilfredo Ariel, IMAL-CONICET, Argentina
72. Reisenhofer, Rafael, Technische Universität Berlin, Germany
73. Restrepo, Juan Felipe, Universidad Nacional de Entre Ríos, Argentina
74. Rosenblatt, Mariel, Universidad Nac. de Gral. Sarmiento, Argentina
75. Ruiz, Mariano, Universidad Nacional de La Plata - CONICET, Argentina
76. Saliani, Sandra, Universitò della Basilicata, Italy
77. Sanjay, P. K., NIT Calicut, India
78. Scarola, Cristian, UNLPam, UBA, Argentina
79. Schlotthauer, Gaston, CONICET / Universidad Nacional de Entre Rios,
Argentina
80. Scotto, Roberto, Universidad Nacional del Litoral - IMAL, Argentina
81. Seuret, Stéphane, Université Paris Est, France
82. Shukla, Niraj, IIT Indore, India
83. Signes, Agnes, Universidad de Murcia, Spain
84. Simons, Laurent, University of Liege, Belgium
85. Soto Quiros, Juan Pablo, Instituto Tecnológico de Costa Rica, Costa Rica
86. Sousa, Matheu, IMPA, Brazil
87. Stojanoska, Irena, Technische Universität Berlin, Macedonia
88. Sun, Qiyu, University of Central Florida, United States
89. Telesca, Luciano, IMAA-CNR, Italy
90. Temlyakov, Vladimir, University of South Carolina, United States
91. Tomassi, Diego, IMAL, UNL-CONICET, Argentina
92. Torres, Maria Eugenia, Universidad Nacional de Entre Rios, Argentina
93. Tremain, Janet, University of Missouri, United States
94. Wendt, Herwig, CNRS, IRIT UMR 5505, University of Toulouse, France
95. Wertz, Tim, UC Davis, United States
96. Wojtaszczyk, Przemys?aw, University of Warsaw, Poland
97. Zuberman, Leandro, Universidad Nac. de Mar del Plata, Argentina

List of Contributors

Peter G. Casazza and Janet C. Tremain
Department of Mathematics, University of Missouri, Columbia, MO 65211, USA
e-mail: casazzap@missouri.edu; tremainjc@missouri.edu
Hans G. Feichtinger
University Vienna, Oskar-Morgenstern-Platz 1, 1090 Wien, Austria
e-mail: hans.feichtinger@univie.ac.at
Kathryn E. Hare
Department of Pure Mathematics, University of Waterloo, Waterloo, ON, Canada, N2L 3G1 e-mail: kehare @uwaterloo.ca

Eugenio Hernández

Departamento de Matemáticas, Módulo 17, Universidad Autónoma de Madrid, 28049 Madrid, Spain e-mail: eugenio.hernandez@uam.es
Yanick Heurteaux
Clermont Université, Université Blaise Pascal, Laboratoire de Mathématiques, BP 10448, F-63000 Clermont-Ferrand - CNRS, UMR 6620, Laboratoire de Mathématiques, F-63177 Aubiere, France
e-mail: Yanick.Heurteaux @ math.univ-bpclermont.fr
Xianfeng Hu
Department of Mathematics, Michigan State University, East Lanisng, MI 48824, USA e-mail: hxf0204@gmail.com

Basarab Matei
Université Paris 13, Institut Galilée, LIPN- UMR CNRS 7030, 93430 Villetaneuse, France e-mail: matei@lipn.univ-paris13.fr

Maria de Natividade
Departamento de Matemática, Universidade Agostinho Neto, Avenida 4 de Fevereiro nro. 71, 1 andar e campus universitario da Camama, C.P. no. 825
Luanda-Angola e-mail: matnaty @hotmail.com

Stéphane Seuret
LAMA, UMR CNRS 8050, Université Paris-Est, LAMA (UMR 8050), UPEMLV, UPEC, CNRS, F-94010, Créteil, France e-mail: stephane.seuret@u-pec.fr
Vladimir Temlyakov
University of South Carolina and Steklov Institute of Mathematics
e-mail: temlyak@math.sc.edu
Yang Wang
Department of Mathematics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong e-mail: yangwang@ust.hk
Qiang Wu
Department of Mathematical Sciences, Middle Tennessee State University, Murfreesboro, TN 37132, USA e-mail: qwu@mtsu.edu

Chapter 1
 Multifractal Analysis of Cantor-Like Measures

Kathryn E. Hare

Abstract

In this course we will study generalized Cantor sets and measures. We will see that they share many properties in common with self-similar sets and measures, although new geometric ideas are often needed in the proofs to replace the combinatorial structure of self-similar sets/measures. In particular, under a suitable separation condition the multifractal spectrum of generalized Cantor measures (the set of local dimensions) can be shown to be a closed interval, with one specific local dimension being attained at almost every point of the Cantor set.

Surprisingly, the property that the multifractal spectrum is a closed interval need not be true for convolutions of (even self-similar) Cantor measures. This seems to be a consequence of 'overlap' in their construction and was established first for certain examples of self-similar Cantor measures and subsequently for generalized Cantor measures. We will see that it is typically the case that the multifractal spectrum of a sufficiently large number of convolutions of fairly arbitrary, continuous measures admits an isolated point. This argument was motivated by the geometric ideas used in proving a special case of this property for generalized Cantor measures.

1.1 Introduction

Often in analysis one is interested in subsets of \mathbb{R} of Lebesgue measure zero and the singular measures ${ }^{1}$ concentrated on these sets. Many of the problems that arise have to do with quantifying the size of the set or the singularity of the measure; for such problems, fractal dimensions can be very helpful.

[^0]The classical middle-third Cantor set and its associated uniform measure is an important example of such a set and measure. The Cantor set and measure are often introduced in real analysis courses to illustrate unusual ideas or pathological behaviour. In this course, we will discuss generalizations of the classical Cantor set and measure, and investigate fractal concepts that help to quantify their singularity, such as local dimension and multifractal spectrum. These generalizations have interesting and unusual properties.

Generalized Cantor sets and measures are typically not self-similar and thus need not have the same symmetry or uniformity as the classical Cantor set/measure. Consequently, the concentration of the measure can vary at different points in its support, meaning general Cantor measures typically take on a range of different local dimensions. These different values are known as the multifractal spectrum. The study of the multifractal spectrum and the 'size' of the sets on which a given local dimension is attained is known as multifractal analysis.

For self-similar measures arising from an IFS which satisfies the open set condition, it is well known that the multifractal spectrum is a closed interval and formulas have been established for the Hausdorff dimension of the sets on which a given local dimension occurs. We will modify this argument to show that a similar result can be obtained for generalized Cantor measures, under reasonably weak assumptions. Another interesting fact we will establish is that the 'average' value of the local dimensions is attained at almost every point. These results can be found in Section 1.3.

Convolutions of the classical Cantor measure are again self-similar measures. However, they are not necessarily generated by an IFS that satisfies the open set condition so the general multifractal theory does not apply. In fact, the theory can fail in a striking way: the multifractal spectrum of the 3-fold convolution of the classical Cantor measure contains an isolated point. Here we will see that convolutions of quite general, continuous, probability measures typically admit isolated points in their multifractal spectrum, provided the number of convolutions is sufficiently large. In particular, this is the case for many generalized Cantor measures. These ideas are the content of Section 1.4.

Most of the proofs given in this note can be found in the literature, as detailed in the final section. There are many other important research papers on related topics; we have only mentioned those most relevant for the material discussed in the course.

1.2 Notation and Basic Facts

1.2.1 The Classical Cantor Set and Measure

The classical middle-third Cantor set C is a fascinating set which is often used in analysis to construct interesting examples. It is compact, totally disconnected, perfect (meaning, every point is an accumulation point), uncountable and of Lebesgue
measure zero. By the classical Cantor measure we mean the singular, probability measure on \mathbb{R} that is uniformly distributed on C. This measure, μ, can be defined in several equivalent ways:

1. As the self-similar measure that arises from the iterated function system (IFS) with contractions $F_{i}(x)=x / 3+2 i / 3, i=0,1$ and probabilities $1 / 2,1 / 2$. This means the measure is invariant in the sense that

$$
\mu(E)=\frac{1}{2}\left(\mu \circ F_{0}^{-1}(E)+\mu \circ F_{1}^{-1}(E)\right) \text { for all Borel sets } E .
$$

The classical Cantor set C is the self-similar set associated with this IFS.
2. As the Borel measure supported on C that assigns mass 2^{-k} to the Cantor intervals that arise at step k in the construction of the Cantor set.
3. As the weak limit of the discrete probability measures $\mu_{K}=2^{-K} \sum_{j=1}^{2^{K}} \delta_{x_{j}}$, where $x_{1}, \ldots, x_{2^{K}}$ are the left end points of the 2^{K} Cantor intervals that are constructed at step K in the standard Cantor set construction. By a weak limit, we mean that for all continuous functions f on $[0,1]$ it is the case that $\int_{0}^{1} f d \mu=\lim _{K} \int_{0}^{1} f d \mu_{K}$.
4. As the probability measure whose cumulative distribution function is the Cantor ternary function.

From these different (but equivalent) descriptions of the Cantor measure one can easily establish many properties of the Cantor set/measure. Definition (2), for example, is useful in calculating the Hausdorff dimension of the set. From definition (3) it can be seen that the Fourier transform of μ is given by $\widehat{\mu}(y)=\prod_{k=1}^{\infty}\left(1+e^{-4 \pi i 3^{-k} y}\right) / 2$ for all y. Since the Cantor ternary function is a continuous function, it follows immediately from definition (4) that the Cantor measure is a continuous (or non-atomic) measure, meaning the measure of any singleton is 0 .

The classical Cantor set and measure has been generalized in many ways. One obvious generalization is to consider the self-similar set arising from the IFS with contractions $F_{i}(x)=r x+i(1-r), i=0,1$ where $0<r<1 / 2$. This is the Cantor set with ratio of dissection r (rather than $1 / 3 \mathrm{rd}$, as in the classical case), meaning that at each step in the standard Cantor set construction one keeps the two outer closed intervals whose length is r times that of the parent interval. We will denote this Cantor set as $C(r)$, so that with this notation the classical Cantor set is $C(1 / 3)$. We can again define the associated uniform Cantor measure that assigns mass 2^{-k} to the Cantor intervals at step k, which in this case are of length r^{k}. This is the self-similar measure generated by the IFS given above, with probabilities $1 / 2,1 / 2$.

Alternatively, rather than the uniform Cantor measure, we could consider the selfsimilar measure generated by the same iterated function systems again, but with probabilities p and $1-p$, where $0 \leq p \leq 1$. We call this the p-Cantor measure on $C(r)$. If $p=0$ or 1 , the p-Cantor measure is the point mass measure at 0 or 1 , respectively. In all other cases, it is a continuous, singular, probability measure.

1.2.2 Cantor Sets and Measures with Varying Ratios of Dissection

In fractal geometry one is often interested in studying self-similar sets and measures arising from quite general iterated function systems. The IFS structure makes it possible to compute many important quantities and deduce various properties of the sets and measures. At the same time, the structure limits the kinds of examples that arise. If we relax this structure, we can create many other intriguing examples. One such variation is to allow the ratios of dissection in the construction of the Cantor set to vary at each step. We could also allow the probabilities to vary at different steps.

1.2.2.1 Cantor Sets with Varying Ratios of Dissection

Let $0<r_{j}<1 / 2$. We denote by $C\left(r_{j}\right)^{2}$ the Cantor set with varying ratios of dissection, r_{j} at step j, given by the following iterative Cantor-like construction: Let $C_{0}=[0,1]$. Remove from C_{0} the open middle interval of length $1-2 r_{1}$, leaving two closed intervals of lengths r_{1}. Call these intervals the Cantor intervals of step one and their union C_{1}. At step j in the construction assume we have inductively constructed C_{j} as a union of 2^{j} closed intervals of length $r_{1} \cdots r_{j}$, the Cantor intervals of step j. Remove the open middle interval of length $\left(1-2 r_{j+1}\right) r_{1} \cdots r_{j}$ from each of the step j intervals and let C_{j+1} be the union of the remaining 2^{j+1} closed intervals of length $r_{1} \cdots r_{j+1}$. Finally, define the Cantor set $C\left(r_{j}\right)$ by

$$
C\left(r_{j}\right)=\bigcap_{j=1}^{\infty} C_{j} .
$$

As with the classical Cantor set, $C\left(r_{j}\right)$ is compact, perfect, totally disconnected and uncountable. Its Lebesgue measure is $\liminf _{n \rightarrow \infty} 2^{-n} r_{1} \cdots r_{n}$ and hence is zero if, for instance, the r_{j} are bounded away from $1 / 2$.

1.2.2.2 Labelling Cantor Intervals and the Elements of the Cantor Set

The Cantor intervals from this construction can be labelled by finite words with letters from $\{0,1\}$. The Cantor intervals of step one will be denoted I_{0} (left interval) and I_{1} (right interval). In general, if the Cantor interval of step n is labelled by the word w of length n, then its two descendants are $I_{w 0}$ and $I_{w 1}$. Each $x \in C\left(r_{j}\right)$ belongs to a unique Cantor interval of step n for each n and these intervals are descendants of one another. Thus x corresponds to an infinite word w with the property that if $w \mid n$ denotes the truncation of w to length n, then $I_{w \mid n}$ is the step n Cantor interval to which x belongs. When we write $x=\left(w_{j}\right)$ we mean this correspondence.

[^1]
1.2.2.3 Uniform and p-Cantor Measures

Given $0 \leq p \leq 1$, by the p-Cantor measure associated with $C\left(r_{j}\right)$, we mean the probability measure μ with the property that

$$
\mu\left(I_{w 0}\right)=\mu\left(I_{w}\right) p \text { and } \mu\left(I_{w 1}\right)=\mu\left(I_{w}\right)(1-p)
$$

Thus if $w=\left(w_{1}, \ldots, w_{n}\right)$ with $w_{i} \in\{0,1\}$, then $\mu\left(I_{w_{1} \cdots w_{n}}\right)=p^{n_{0}}(1-p)^{n-n_{0}}$ where $n_{0}=\operatorname{card}\left\{i: w_{i}=0\right\}$. As in the case for Cantor sets with fixed ratio of dissection, the p-Cantor measure μ is a singular measure whose support is the Cantor set $C\left(r_{j}\right)$. It is continuous provided $p \neq 0,1$. If $p=1 / 2$, we call μ the uniform Cantor measure on $C\left(r_{j}\right)$.

More generally, given a sequence of weights $\left\{p_{j}\right\}, 0 \leq p_{j} \leq 1$, we could define a Cantor measure by the rule $\mu\left(I_{w_{1} \ldots w_{n}}\right)=p_{w_{1} 1} p_{w_{2}} \cdots p_{w_{n} n}$ where $p_{0 j}=p_{j}$ and $p_{1 j}=1-p_{j}$.

One could consider still more general Cantor sets and measures by removing from $[0,1], k_{1}$ equally spaced, open intervals of length g_{1} at step one, so that C_{1} is the union of $k_{1}+1$ closed intervals of length r_{1} where $\left(k_{1}+1\right) r_{1}+k_{1} g_{1}=1$. Then inductively remove from each Cantor interval of step j, k_{j} equally spaced open intervals of length g_{j} so that C_{j} is the union of $\prod_{i=1}^{j}\left(k_{j}+1\right)$ closed intervals of length $r_{1} \cdots r_{j}$ where $\left(k_{j}+1\right) r_{j}+k_{j} g_{j}=1$. We can also define a general Cantor measure by putting weights $p_{i j}$ on the $i=1, \ldots, k_{j}+1$ descendants at step j. In this note, we will focus on p-Cantor measures on $C\left(r_{j}\right)$, but much of what is said here is true for these very general Cantor sets and measures, at least under suitable assumptions. The technical details will be left for the reader.

1.2.3 Hausdorff Dimension

Let $\delta>0$. By a δ-cover of a non-empty Borel subset $E \subseteq \mathbb{R}$ we mean a countable collection of sets $\left\{U_{i}\right\}$ of diameter at most δ, whose union contains E. We write $\left|U_{i}\right|$ to denote the diameter of the set U_{i}. Given $s \geq 0$, we define

$$
H_{\delta}^{s}(E)=\inf \left\{\sum_{i=1}^{\infty}\left|U_{i}\right|^{s}:\left\{U_{i}\right\} \text { is a } \delta \text {-cover of } E\right\}
$$

and put

$$
H^{s}(E)=\sup _{\delta>0} H_{\delta}^{s}(E)=\lim _{\delta \rightarrow 0^{+}} H_{\delta}^{s}(E)
$$

$H^{s}(\cdot)$ is a measure known as the s-dimensional Hausdorff measure. $H^{s}(E)$ is a decreasing function of s and can be positive and finite for at most one choice of s. The Hausdorff dimension of E, denoted $\operatorname{dim}_{H} E$, is defined to be the unique index s such that $H^{t}(E)=0$ if $t>s$ and $H^{t}(E)=\infty$ for $t<s$. Thus

$$
\begin{aligned}
\operatorname{dim}_{H} F & =\inf \left\{s: H^{s}(F)=0\right\} \\
& =\sup \left\{s: H^{s}(F)=\infty\right\} .
\end{aligned}
$$

A useful fact is the Mass distribution principle: If there are a measure μ on E and real numbers $c, \delta>0$ such that $\mu(U) \leq c|U|^{s}$ for all Borel sets U with diameter at most δ, then $H^{s}(E) \geq \mu(E) / c$ and $\operatorname{dim}_{H} E \geq s$.

We leave it as an exercise to verify that the Hausdorff dimension of $C=C\left(r_{j}\right)$ is given by the formula

$$
\operatorname{dim}_{H} C=\liminf _{n \rightarrow \infty} \frac{\log 2}{\frac{1}{n}\left|\log r_{1} \cdots r_{n}\right|}
$$

Exercise 1.1. Establish the formula given for the Hausdorff dimension of $C\left(r_{j}\right)$.
Exercise 1.2. Show that for every $s \leq 1$ there is a Cantor set with Hausdorff dimension equal to s.

Exercise 1.3. Construct a Cantor-like set, $C\left(r_{j}\right)$, with Hausdorff dimension one and Lebesgue measure zero.

1.3 Multifractal Analysis of p-Cantor Measures

1.3.1 Local Dimension

In many problems one is interested in quantifying the singularity of a measure, i.e., to specify, in some sense, how concentrated the measure is. One way to quantify this is through the Hausdorff dimension of the measure μ. This is defined as

$$
\operatorname{dim}_{H} \mu=\inf \left\{\operatorname{dim}_{H} E: \mu(E)>0\right\} .
$$

This quantity provides global information on the singularity of the measure μ. For measures that are not uniformly distributed it is also of interest to quantify their local singularity. The local dimension is useful for this.

Definition 1.1. By the local dimension at x of a probability measure μ on \mathbb{R} we mean the quantity

$$
\operatorname{dim}_{l o c} \mu(x)=\lim _{r \rightarrow 0^{+}} \frac{\log (\mu(B(x, r)))}{\log r}
$$

where $B(x, r)$ is the ball centred at x with radius r, provided this limit exists.
The upper and lower dimensions, denoted $\overline{\operatorname{dim}}_{l o c} \mu(x)$ and $\operatorname{dim}_{l o c} \mu(x)$, are obtained by replacing the limit in the definition above with limsup and liminf, respectively.

The local dimension at x describes the power law behaviour of $\mu(B(x, r))$ for small r. Notice that if $x \notin \operatorname{supp} \mu$, then $\operatorname{dim}_{l o c} \mu(x)=\infty$, while if μ is Lebesgue measure on $[0,1], \operatorname{dim}_{l o c} \mu(x)=1$ at all $x \in[0,1]$.

One can prove that

$$
\operatorname{dim}_{H} \mu=\sup \left\{s: \underline{\operatorname{dim}}_{l o c} \mu(x) \geq s \text { for } \mu \text { a.e. } x\right\} .
$$

Moreover, the following is true.
Proposition 1.1. Suppose μ is a probability measure, $F \subseteq \mathbb{R}$ is a Borel set and $0<c<\infty$.
(a) $H^{s}(F) \geq \mu(F) / c$ if

$$
\limsup _{r \rightarrow 0^{+}} \frac{\mu(B(x, r))}{r^{s}} \leq c \text { for all } x \in F
$$

(b) $H^{s}(F) \leq 10^{s} \mu(\mathbb{R}) / c$ if

$$
\limsup _{r \rightarrow 0^{+}} \frac{\mu(B(x, r))}{r^{s}} \geq c \text { for all } x \in F
$$

Proof. (a) Fix $\varepsilon>0$ and for each n let

$$
F_{n}=\left\{x \in F: \mu(B(x, r)) \leq(c+\varepsilon) r^{s} \text { for all } r \leq 1 / n\right\}
$$

The sets F_{n} are increasing and the assumption of (a) guarantees that their union is all of F.

Temporarily fix n and let $\left\{U_{i}\right\}$ be a $1 / 2 n$-cover of F and hence also of F_{n}. Each set U_{i} has diameter less than $1 / n$ and thus $\mu\left(B\left(x,\left|U_{i}\right|\right)\right) \leq(c+\varepsilon)\left|U_{i}\right|^{s}$ for all $x \in F_{n}$. Notice that if $x \in U_{i} \cap F_{n}$, then $B\left(x,\left|U_{i}\right|\right) \supseteq U_{i}$ and $\mu\left(U_{i}\right) \leq(c+\varepsilon)\left|U_{i}\right|^{s}$. Thus

$$
\mu\left(F_{n}\right) \leq \sum_{i: U_{i} \cap F_{n} \neq \mathrm{empty}} \mu\left(U_{i}\right) \leq(c+\varepsilon) \sum\left|U_{i}\right|^{s}
$$

This is true for all $1 / 2 n$-covers of F and consequently $\mu\left(F_{n}\right) \leq(c+\varepsilon) H_{1 / 2 n}^{s}(F)$. But as $n \rightarrow \infty, \mu\left(F_{n}\right) \rightarrow \mu(F)$ and $H_{1 / 2 n}^{s}(F) \rightarrow H^{s}(F)$. Since $\varepsilon>0$ was arbitrary, $\mu(F) \leq c H^{s}(F)$.
(b) Fix $\varepsilon, \delta>0$ and consider the collection of all balls, $B(x, r)$, with $x \in F$, $0<r<\delta$ and $\mu(B(x, r)) \geq(c-\varepsilon) r^{s}$. By assumption, every $x \in F$ belongs to such a ball for arbitrarily small r. By the Vitali covering lemma there are countably many disjoint balls from this collection, $\left\{B_{i}\right\}$, such that $\mu\left(F \backslash \bigcup_{i} B_{i}\right)=0$ and every ball in the collection is contained in the union of the sets \widetilde{B}_{i}, where \widetilde{B}_{i} is a ball concentric with B_{i} and having five times the radius. Thus $F \subseteq \bigcup_{i} \widetilde{B}_{i}$ and $\left|\widetilde{B}_{i}\right|^{s} \leq 10^{s} \mu\left(B_{i}\right) /(c-\varepsilon)$. As $\left|\widetilde{B}_{i}\right| \leq 10 \delta$ and the sets B_{i} are disjoint,

[^0]: ${ }^{1}$ By a measure, we mean a finite, positive, regular, compactly supported, Borel measure on \mathbb{R}.
 K.E. Hare (\triangle)

 Department of Pure Mathematics, University of Waterloo, Waterloo, ON, Canada, N2L 3G1
 e-mail: kehare@uwaterloo.ca

[^1]: ${ }^{2}$ More properly, we should write $C\left(\left\{r_{j}\right\}\right)$, but we prefer $C\left(r_{j}\right)$ for simplicity. This should not cause any confusion with the notation $C(r)$ for the Cantor set with fixed ratio of dissection r.

