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ANHA Series Preface

The Applied and Numerical Harmonic Analysis (ANHA) book series aims to provide
the engineering, mathematical, and scientific communities with significant devel-
opments in harmonic analysis, ranging from abstract harmonic analysis to basic
applications. The title of the series reflects the importance of applications and
numerical implementation, but richness and relevance of applications and imple-
mentation depend fundamentally on the structure and depth of theoretical underpin-
nings. Thus, from our point of view, the interleaving of theory and applications and
their creative symbiotic evolution is axiomatic.

Harmonic analysis is a wellspring of ideas and applicability that has flour-
ished, developed, and deepened over time within many disciplines and by means
of creative cross-fertilization with diverse areas. The intricate and fundamental re-
lationship between harmonic analysis and fields such as signal processing, partial
differential equations (PDEs), and image processing is reflected in our state-of-the-
art ANHA series.

Our vision of modern harmonic analysis includes mathematical areas such as
wavelet theory, Banach algebras, classical Fourier analysis, time-frequency analysis,
and fractal geometry, as well as the diverse topics that impinge on them.

For example, wavelet theory can be considered an appropriate tool to deal with
some basic problems in digital signal processing, speech and image processing, geo-
physics, pattern recognition, biomedical engineering, and turbulence. These areas
implement the latest technology from sampling methods on surfaces to fast algo-
rithms and computer vision methods. The underlying mathematics of wavelet theory
depends not only on classical Fourier analysis but also on ideas from abstract har-
monic analysis, including von Neumann algebras and the affine group. This leads
to a study of the Heisenberg group and its relationship to Gabor systems and of the
metaplectic group for a meaningful interaction of signal decomposition methods.

The unifying influence of wavelet theory in the aforementioned topics illustrates
the justification for providing a means for centralizing and disseminating informa-
tion from the broader, but still focused, area of harmonic analysis. This will be a key
role of ANHA. We intend to publish with the scope and interaction that such a host
of issues demands.
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vi ANHA Series Preface

Along with our commitment to publish mathematically significant works at the
frontiers of harmonic analysis, we have a comparably strong commitment to publish
major advances in applicable topics such as the following, where harmonic analysis
plays a substantial role:

Biomathematics, bioengineering,
and biomedical signal processing;
Communications and RADAR;

Compressive sensing (sampling)
and sparse representations;

Data science, data mining,
and dimension reduction;

Fast algorithms;
Frame theory and noise reduction;

Image processing and
super-resolution;

Machine learning;
Phaseless reconstruction;

Quantum informatics;
Remote sensing;
Sampling theory;

Spectral estimation;
Time-frequency and Time-scale

analysis—Gabor theory
and Wavelet theory

The above point of view for the ANHA book series is inspired by the history of
Fourier analysis itself, whose tentacles reach into so many fields.

In the last two centuries Fourier analysis has had a major impact on the devel-
opment of mathematics, on the understanding of many engineering and scientific
phenomena, and on the solution of some of the most important problems in mathe-
matics and the sciences. Historically, Fourier series were developed in the analysis
of some of the classical PDEs of mathematical physics; these series were used to
solve such equations. In order to understand Fourier series and the kinds of solu-
tions they could represent, some of the most basic notions of analysis were defined,
e.g., the concept of “function.” Since the coefficients of Fourier series are integrals,
it is no surprise that Riemann integrals were conceived to deal with uniqueness
properties of trigonometric series. Cantor’s set theory was also developed because
of such uniqueness questions.

A basic problem in Fourier analysis is to show how complicated phenomena,
such as sound waves, can be described in terms of elementary harmonics. There are
two aspects of this problem: first, to find, or even define properly, the harmonics or
spectrum of a given phenomenon, e.g., the spectroscopy problem in optics; second,
to determine which phenomena can be constructed from given classes of harmonics,
as done, for example, by the mechanical synthesizers in tidal analysis.

Fourier analysis is also the natural setting for many other problems in engineer-
ing, mathematics, and sciences. For example, Wiener’s Tauberian theorem in Fourier
analysis not only characterizes the behavior of the prime numbers but also provides
the proper notion of spectrum for phenomena such as white light; this latter process
leads to the Fourier analysis associated with correlation functions in filtering and
prediction problems, and these problems, in turn, deal naturally with Hardy spaces
in the theory of complex variables.

Nowadays, some of the theory of PDEs has given way to the study of Fourier
integral operators. Problems in antenna theory are studied in terms of unimodular
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trigonometric polynomials. Applications of Fourier analysis abound in signal
processing, whether with the fast Fourier transform (FFT), or filter design, or the
adaptive modeling inherent in time-frequency-scale methods such as wavelet theory.

The coherent states of mathematical physics are translated and modulated Fourier
transforms, and these are used, in conjunction with the uncertainty principle, for
dealing with signal reconstruction in communications theory. We are back to the
raison d’être of the ANHA series!

College Park, MD, USA John J. Benedetto





Foreword

The CIMPA13 Conference which took place in August 5–16, 2013, in Mar de Plata,
Argentina, was entitled New Trends in Applied Harmonic Analysis Sparse Rep-
resentations, Compressed Sensing and Multifractal Analysis. The event took
place in a friendly atmosphere, encouraging interaction between speakers and par-
ticipants, among them PhD students, postdocs, and senior scientists. Unfortunately
not all the main speakers have been able to provide a written version of their pre-
sentation, but in many cases one may find slides of more formal talks through the
Internet. General information about the conference can be found at

http://www.nuhag.eu/cimpa13

The topics of the articles which appear in this volume reflect the diversity of re-
cent developments in harmonic analysis, both at the level of pure mathematics and
applications. Some contributions concern interesting mathematical questions aris-
ing from a systematic investigation of structures which have not been sufficiently
well explored so far, and others – such as sparsity with respect to non-orthogonal
systems – are part of a current trend, related to compressed sensing.

To be more precise, let us take a look at the individual contributions: The first
three chapters describe problems related to multifractal analysis (Kathryn E. Hare,
Stephane Seuret, and Yanick Heurteaux).

We then find two chapters thematizing the sparsity of wavelet coefficients. In the
first contribution (by Vladimir Temlyakov), Lebesgue-type inequalities for greedy
approximations are discussed, demonstrating that many of the well-known expan-
sions have the following nice property: Given the set of, say, wavelet coefficients of
a given function in some Besov space (because these spaces can be characterized
by weighted summability conditions with respect to a given wavelet system), it is a
good strategy (not only in the Hilbert spaces setting) to just take more and more of
the “large coefficients” in order to approximate the function, in fact with an optimal
rate.

In the second chapter in this direction, written by Eugenio Hernandez and
Marı́a de Natividade, we learn some results on nonlinear approximation for wavelet
bases in weighted function spaces. Here Bernstein- and Jackson-type theorems for

ix



x Foreword

weighted Lp-spaces are provided, showing that wavelet expansions are doing a good
job for the approximation of functions in this setting.

The chapter provided by Pete Casazza and Janet C. Tremain discusses the con-
sequences of the Marcus/Spielman/Srivasta solution to the Kadison-Singer problem
in the context of frame theory with some first glimpse on the consequences within
harmonic analysis.

The chapter “Model Sets and New Versions of Shannon’s Sampling Theorem” by
Basarab Matei presents some interesting insight on universal sampling sets, the so-
called model sets and their relations to quasicrystals. While the classical Shannon
theorem describes how one can recover a band-limited signal, given the spectral
supportΩ (the support of f̂ ), with a formula which obviously depends on the choice
of this set, the new approach discusses situations where the same sampling set can
be used (with a more complicated recovery algorithm) for a large variety of sets Ω ,
as long as their measure is not too big.

The section written by Xianfeng Hu, Yang Wang, and Qiang Wu treats a some-
what unusual and therefore very interesting topic: Stylometry and Mathematical
Study of Authorship.

The final contribution, entitled “Thoughts on Numerical and Conceptual Har-
monic Analysis,” provided by the author of this introduction gives a glimpse on a
problem within the community of harmonic analysts which should be given a bit
more attention: the interaction between principles of abstract (or as he proposes
conceptual harmonic analysis) and those who are involved in numerical resp. com-
putational harmonic analysis. While the first group is searching for general struc-
tures, the second one is looking for efficient algorithms and their implementation,
often using FFT-based algorithms. The aspect lost in this separation of duties is the
connection between the two approaches, the question, which function spaces are
suitable to describe the errors made by moving from the continuous, to the discrete,
and then of course to the finite setting. The article is just providing a few thoughts in
this direction and suggests to pay more attention to it, not just in the spirit of function
spaces or pure functional analysis but more in the sense of constructive approxima-
tion theory, with quantitative error bounds, estimates for the required problem size
if one needs a guaranteed estimate for the size of the error.

Thus in some sense the article describes the ideas and goals behind the material
presented by the author during the conference in a more concrete but less reflected
format. Important parts of those presentations are available in the form of PDF files
from www.nuhag.eu.

Overall it is clear from this volume that harmonic analysis at large is and will
provide a wide variety of interesting mathematical problems and that research in
this direction will continue to be fruitful and rewarding for those interested in math-
ematical analysis in general, be it abstract or more application oriented.

Vienna, Austria Hans Feichtinger
October 2015



Preface

This book evolved from the written notes that were distributed to the students
who participated in the CIMPA school, New Trends in Applied Harmonic Analy-
sis: Sparse Representations, Compressed Sensing and Multifractal Analysis, which
took place in Mar del Plata (Argentina) in August 2013.

This event was motivated by the recent interactions which developed between
harmonic analysis and signal and image processing during the last 10 years. During
that time, several technological deadlocks were solved through the resolution of
deep theoretical problems in harmonic analysis. The purpose of this school was to
focus on two particularly active areas which are representative of such advances:
multifractal analysis and compressed sensing. The courses were taught by leaders
in these areas and covered both theoretical aspects and applications. Most of the
attendance was composed of PhD students and postdocs from diverse backgrounds
(mathematics, signal and image processing, etc.), and the corresponding chapters
of this book reflect the pedagogical care of the lecturers, in particular in the careful
treatment of all needed prerequisites, and the illustration of the developments of
each topic by several examples. Another original feature of this book is that some
subjects overlap, with views taken from different perspectives, thus offering an in-
depth picture of these scientific areas.

Let us be more specific. Multifractal analysis offers new tools of classification
for signals and images derived from their scaling invariance properties. The part of
the book concerning this subject include the contribution of K. Hare, “Multifractal
Analysis of Cantor-like Measures,” which deals with basics of fractal analysis and
then focuses on the key example of Cantor-like measures. The contribution of Y.
Heurteaux “An introduction to Mandelbrot cascades” goes one step further in mod-
eling complexity and deals with the multifractal measures supplied by multiplicative
cascades; a careful treatment of these examples is motivated both by the historical
role played by these measures as models for the dissipation of energy in turbu-
lent fluids and by the importance that they have recently acquired in other areas of
mathematics (fragmentation, coalescence, harmonic measure associated with frac-
tal sets, Schramm-Loewner evolution, etc.). Finally, the contribution of Stéphane
Seuret “Multifractal analysis and Wavelets” deals with the extensions that these

xi
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ideas have known in the setting of functions. The main tool here is wavelet analy-
sis, a tool which is now prevalent in applied analysis and reappears in several other
chapters of this book. Here its role is to yield a characterization of both pointwise
and global regularity of functions. This property explains the success of wavelets
in applied multifractal analysis, since this subject can be seen as unfolding the rela-
tionships between pointwise and global regularity and then deriving practical clas-
sification tools from these regularity characteristics.

Recently, many powerful techniques have been developed emphasizing the role
of sparsity in signal and image processing. These new methods have had a sub-
stantial impact in areas like sampling, data compression and representation, atomic
decompositions, wavelets, frames, and high-dimensional data analysis. In particu-
lar compressed sensing represents a new paradigm in signal and image processing,
allowing to reconstruct compressible data from the knowledge of an underdeter-
mined system, through an �1 minimization. The mathematics behind these methods
is rich and sophisticated and presents new challenges. The chapters by Temlyakov
“Lebesgue-type Inequalities for Greedy Approximation” and Hernández et. al “Re-
sults on Nonlinear Approximation for Wavelet Bases in Weighted Function Spaces”
are excellent examples of the advances in this area.

On another note, just before the school took place, the Kadison-Singer conjec-
ture was solved, and since this had deep impact on harmonic analysis – because
of the implications with respect to the decomposition of frames into a finite num-
ber of Riesz bases Feichtinger conjecture – Pete Casazza gave a really nice lecture
about the diverse attempts in the solution and agreed to write a chapter about all the
implications.

Note that the contribution of Y. Heurteaux was not part of the courses taught at
the CIMPA school of August 2013, but grew from the notes of another course taught
at a fractal conference that took place in Porquerolles (France) in September 2013.

Nashville, TN, USA Akram Aldroubi
Buenos Aires, Argentina Carlos Cabrelli
Paris, France Stephane Jaffard
Buenos Aires, Argentina Ursula Molter
October 2015
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Chapter 1
Multifractal Analysis of Cantor-Like Measures

Kathryn E. Hare

Abstract In this course we will study generalized Cantor sets and measures. We will
see that they share many properties in common with self-similar sets and mea-
sures, although new geometric ideas are often needed in the proofs to replace the
combinatorial structure of self-similar sets/measures. In particular, under a suit-
able separation condition the multifractal spectrum of generalized Cantor measures
(the set of local dimensions) can be shown to be a closed interval, with one specific
local dimension being attained at almost every point of the Cantor set.

Surprisingly, the property that the multifractal spectrum is a closed interval need
not be true for convolutions of (even self-similar) Cantor measures. This seems to be
a consequence of ‘overlap’ in their construction and was established first for certain
examples of self-similar Cantor measures and subsequently for generalized Cantor
measures. We will see that it is typically the case that the multifractal spectrum of
a sufficiently large number of convolutions of fairly arbitrary, continuous measures
admits an isolated point. This argument was motivated by the geometric ideas used
in proving a special case of this property for generalized Cantor measures.

1.1 Introduction

Often in analysis one is interested in subsets of R of Lebesgue measure zero and the
singular measures1concentrated on these sets. Many of the problems that arise have
to do with quantifying the size of the set or the singularity of the measure; for such
problems, fractal dimensions can be very helpful.

1 By a measure, we mean a finite, positive, regular, compactly supported, Borel measure on R.
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2 K.E. Hare

The classical middle-third Cantor set and its associated uniform measure is an
important example of such a set and measure. The Cantor set and measure are of-
ten introduced in real analysis courses to illustrate unusual ideas or pathological
behaviour. In this course, we will discuss generalizations of the classical Cantor set
and measure, and investigate fractal concepts that help to quantify their singular-
ity, such as local dimension and multifractal spectrum. These generalizations have
interesting and unusual properties.

Generalized Cantor sets and measures are typically not self-similar and thus need
not have the same symmetry or uniformity as the classical Cantor set/measure. Con-
sequently, the concentration of the measure can vary at different points in its support,
meaning general Cantor measures typically take on a range of different local dimen-
sions. These different values are known as the multifractal spectrum. The study of
the multifractal spectrum and the ‘size’ of the sets on which a given local dimension
is attained is known as multifractal analysis.

For self-similar measures arising from an IFS which satisfies the open set condi-
tion, it is well known that the multifractal spectrum is a closed interval and formulas
have been established for the Hausdorff dimension of the sets on which a given
local dimension occurs. We will modify this argument to show that a similar result
can be obtained for generalized Cantor measures, under reasonably weak assump-
tions. Another interesting fact we will establish is that the ‘average’ value of the
local dimensions is attained at almost every point. These results can be found in
Section 1.3.

Convolutions of the classical Cantor measure are again self-similar measures.
However, they are not necessarily generated by an IFS that satisfies the open set
condition so the general multifractal theory does not apply. In fact, the theory can
fail in a striking way: the multifractal spectrum of the 3-fold convolution of the clas-
sical Cantor measure contains an isolated point. Here we will see that convolutions
of quite general, continuous, probability measures typically admit isolated points
in their multifractal spectrum, provided the number of convolutions is sufficiently
large. In particular, this is the case for many generalized Cantor measures. These
ideas are the content of Section 1.4.

Most of the proofs given in this note can be found in the literature, as detailed in
the final section. There are many other important research papers on related topics;
we have only mentioned those most relevant for the material discussed in the course.

1.2 Notation and Basic Facts

1.2.1 The Classical Cantor Set and Measure

The classical middle-third Cantor set C is a fascinating set which is often used in
analysis to construct interesting examples. It is compact, totally disconnected, per-
fect (meaning, every point is an accumulation point), uncountable and of Lebesgue
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measure zero. By the classical Cantor measure we mean the singular, probability
measure on R that is uniformly distributed on C. This measure, μ , can be defined in
several equivalent ways:

1. As the self-similar measure that arises from the iterated function system (IFS)
with contractions Fi(x) = x/3+ 2i/3, i = 0,1 and probabilities 1/2,1/2. This
means the measure is invariant in the sense that

μ(E) =
1
2

(
μ ◦F−1

0 (E)+ μ ◦F−1
1 (E)

)
for all Borel sets E.

The classical Cantor set C is the self-similar set associated with this IFS.
2. As the Borel measure supported on C that assigns mass 2−k to the Cantor inter-

vals that arise at step k in the construction of the Cantor set.
3. As the weak limit of the discrete probability measures μK = 2−K∑2K

j=1 δx j , where
x1, . . . ,x2K are the left end points of the 2K Cantor intervals that are constructed
at step K in the standard Cantor set construction. By a weak limit, we mean that
for all continuous functions f on [0,1] it is the case that

∫ 1
0 f dμ = limK

∫ 1
0 f dμK .

4. As the probability measure whose cumulative distribution function is the Cantor
ternary function.

From these different (but equivalent) descriptions of the Cantor measure one can
easily establish many properties of the Cantor set/measure. Definition (2), for exam-
ple, is useful in calculating the Hausdorff dimension of the set. From definition (3) it
can be seen that the Fourier transform of μ is given by μ̂(y)=∏∞

k=1(1+e−4π i3−ky)/2
for all y. Since the Cantor ternary function is a continuous function, it follows imme-
diately from definition (4) that the Cantor measure is a continuous (or non-atomic)
measure, meaning the measure of any singleton is 0.

The classical Cantor set and measure has been generalized in many ways. One
obvious generalization is to consider the self-similar set arising from the IFS with
contractions Fi(x) = rx+ i(1− r), i = 0,1 where 0 < r < 1/2. This is the Cantor set
with ratio of dissection r (rather than 1/3rd, as in the classical case), meaning that
at each step in the standard Cantor set construction one keeps the two outer closed
intervals whose length is r times that of the parent interval. We will denote this
Cantor set as C(r), so that with this notation the classical Cantor set is C(1/3). We
can again define the associated uniform Cantor measure that assigns mass 2−k to the
Cantor intervals at step k, which in this case are of length rk. This is the self-similar
measure generated by the IFS given above, with probabilities 1/2,1/2.

Alternatively, rather than the uniform Cantor measure, we could consider the self-
similar measure generated by the same iterated function systems again, but with
probabilities p and 1− p, where 0 ≤ p ≤ 1. We call this the p-Cantor measure
on C(r). If p = 0 or 1, the p-Cantor measure is the point mass measure at 0 or 1,
respectively. In all other cases, it is a continuous, singular, probability measure.



4 K.E. Hare

1.2.2 Cantor Sets and Measures with Varying Ratios of Dissection

In fractal geometry one is often interested in studying self-similar sets and measures
arising from quite general iterated function systems. The IFS structure makes it
possible to compute many important quantities and deduce various properties of the
sets and measures. At the same time, the structure limits the kinds of examples that
arise. If we relax this structure, we can create many other intriguing examples. One
such variation is to allow the ratios of dissection in the construction of the Cantor set
to vary at each step. We could also allow the probabilities to vary at different steps.

1.2.2.1 Cantor Sets with Varying Ratios of Dissection

Let 0 < r j < 1/2. We denote by C(r j)
2 the Cantor set with varying ratios of dis-

section, r j at step j, given by the following iterative Cantor-like construction: Let
C0 = [0,1]. Remove from C0 the open middle interval of length 1−2r1, leaving two
closed intervals of lengths r1. Call these intervals the Cantor intervals of step one
and their union C1. At step j in the construction assume we have inductively con-
structed Cj as a union of 2 j closed intervals of length r1 · · · r j, the Cantor intervals of
step j. Remove the open middle interval of length (1− 2r j+1)r1 · · ·r j from each of
the step j intervals and let Cj+1 be the union of the remaining 2 j+1 closed intervals
of length r1 · · · r j+1. Finally, define the Cantor set C(r j) by

C(r j) =
∞⋂

j=1

Cj.

As with the classical Cantor set, C(r j) is compact, perfect, totally disconnected
and uncountable. Its Lebesgue measure is liminfn→∞ 2−nr1 · · · rn and hence is zero
if, for instance, the r j are bounded away from 1/2.

1.2.2.2 Labelling Cantor Intervals and the Elements of the Cantor Set

The Cantor intervals from this construction can be labelled by finite words with
letters from {0,1}. The Cantor intervals of step one will be denoted I0 (left interval)
and I1 (right interval). In general, if the Cantor interval of step n is labelled by the
word w of length n, then its two descendants are Iw0 and Iw1. Each x∈C(r j) belongs
to a unique Cantor interval of step n for each n and these intervals are descendants
of one another. Thus x corresponds to an infinite word w with the property that if
w|n denotes the truncation of w to length n, then Iw|n is the step n Cantor interval to
which x belongs. When we write x = (wj) we mean this correspondence.

2 More properly, we should write C({r j}), but we prefer C(r j) for simplicity. This should not cause
any confusion with the notation C(r) for the Cantor set with fixed ratio of dissection r.
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1.2.2.3 Uniform and p-Cantor Measures

Given 0 ≤ p ≤ 1, by the p-Cantor measure associated with C(r j), we mean the
probability measure μ with the property that

μ(Iw0) = μ(Iw)p and μ(Iw1) = μ(Iw)(1− p).

Thus if w = (w1, . . . ,wn) with wi ∈ {0,1}, then μ(Iw1···wn) = pn0(1− p)n−n0 where
n0 = card{i : wi = 0}. As in the case for Cantor sets with fixed ratio of dissection,
the p-Cantor measure μ is a singular measure whose support is the Cantor set C(r j).
It is continuous provided p �= 0,1. If p= 1/2, we call μ the uniform Cantor measure
on C(r j).

More generally, given a sequence of weights {p j}, 0 ≤ p j ≤ 1, we could define
a Cantor measure by the rule μ(Iw1...wn) = pw11 pw22 · · · pwnn where p0 j = p j and
p1 j = 1− p j.

One could consider still more general Cantor sets and measures by removing
from [0,1], k1 equally spaced, open intervals of length g1 at step one, so that C1

is the union of k1 + 1 closed intervals of length r1 where (k1 + 1)r1 + k1g1 = 1.
Then inductively remove from each Cantor interval of step j, k j equally spaced
open intervals of length g j so that Cj is the union of ∏ j

i=1(k j + 1) closed intervals
of length r1 · · ·r j where (k j + 1)r j + k jg j = 1. We can also define a general Cantor
measure by putting weights pi j on the i = 1, . . . ,k j + 1 descendants at step j. In
this note, we will focus on p-Cantor measures on C(r j), but much of what is said
here is true for these very general Cantor sets and measures, at least under suitable
assumptions. The technical details will be left for the reader.

1.2.3 Hausdorff Dimension

Let δ > 0. By a δ -cover of a non-empty Borel subset E ⊆ R we mean a countable
collection of sets {Ui} of diameter at most δ , whose union contains E . We write |Ui|
to denote the diameter of the set Ui. Given s≥ 0, we define

Hs
δ (E) = inf

{
∞

∑
i=1
|Ui|s : {Ui} is a δ -cover of E

}

and put
Hs(E) = sup

δ>0
Hs
δ (E) = lim

δ→0+
Hs
δ (E).

Hs(·) is a measure known as the s-dimensional Hausdorff measure. Hs(E) is a
decreasing function of s and can be positive and finite for at most one choice of s.
The Hausdorff dimension of E, denoted dimH E , is defined to be the unique index s
such that Ht(E) = 0 if t > s and Ht(E) = ∞ for t < s. Thus



6 K.E. Hare

dimH F = inf{s : Hs(F) = 0}
= sup{s : Hs(F) = ∞}.

A useful fact is the Mass distribution principle: If there are a measure μ on E and
real numbers c,δ > 0 such that μ(U)≤ c|U |s for all Borel sets U with diameter at
most δ , then Hs(E)≥ μ(E)/c and dimH E ≥ s.

We leave it as an exercise to verify that the Hausdorff dimension of C =C(r j) is
given by the formula

dimH C = liminf
n→∞

log2
1
n |logr1 · · · rn|

.

Exercise 1.1. Establish the formula given for the Hausdorff dimension of C(r j).

Exercise 1.2. Show that for every s≤ 1 there is a Cantor set with Hausdorff dimen-
sion equal to s.

Exercise 1.3. Construct a Cantor-like set, C(r j), with Hausdorff dimension one and
Lebesgue measure zero.

1.3 Multifractal Analysis of p-Cantor Measures

1.3.1 Local Dimension

In many problems one is interested in quantifying the singularity of a measure, i.e.,
to specify, in some sense, how concentrated the measure is. One way to quantify
this is through the Hausdorff dimension of the measure μ . This is defined as

dimH μ = inf{dimH E : μ(E)> 0}.
This quantity provides global information on the singularity of the measure μ . For
measures that are not uniformly distributed it is also of interest to quantify their
local singularity. The local dimension is useful for this.

Definition 1.1. By the local dimension at x of a probability measure μ on R we
mean the quantity

dimlocμ(x) = lim
r→0+

log(μ(B(x,r)))
logr

where B(x,r) is the ball centred at x with radius r, provided this limit exists.
The upper and lower dimensions, denoted dimlocμ(x) and dimlocμ(x), are ob-

tained by replacing the limit in the definition above with limsup and liminf,
respectively.

The local dimension at x describes the power law behaviour of μ(B(x,r)) for
small r. Notice that if x /∈suppμ , then dimlocμ(x) = ∞, while if μ is Lebesgue mea-
sure on [0,1], dimlocμ(x) = 1 at all x ∈ [0,1].
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One can prove that

dimH μ = sup{s : dimlocμ(x)≥ s for μ a.e. x}.

Moreover, the following is true.

Proposition 1.1. Suppose μ is a probability measure, F ⊆ R is a Borel set and
0 < c < ∞.

(a) Hs(F)≥ μ(F)/c if

limsup
r→0+

μ(B(x,r))
rs ≤ c for all x ∈ F.

(b) Hs(F)≤ 10sμ(R)/c if

limsup
r→0+

μ(B(x,r))
rs ≥ c for all x ∈ F.

Proof. (a) Fix ε > 0 and for each n let

Fn = {x ∈ F : μ(B(x,r))≤ (c+ ε)rs for all r ≤ 1/n}.

The sets Fn are increasing and the assumption of (a) guarantees that their union is
all of F .

Temporarily fix n and let {Ui} be a 1/2n-cover of F and hence also of Fn. Each
set Ui has diameter less than 1/n and thus μ(B(x, |Ui|))≤ (c+ε) |Ui|s for all x ∈ Fn.
Notice that if x ∈Ui∩Fn, then B(x, |Ui|)⊇Ui and μ(Ui)≤ (c+ ε) |Ui|s. Thus

μ(Fn)≤ ∑
i:Ui∩Fn �=empty

μ(Ui)≤ (c+ ε)∑ |Ui|s .

This is true for all 1/2n-covers of F and consequently μ(Fn) ≤ (c+ ε)Hs
1/2n(F).

But as n→ ∞, μ(Fn)→ μ(F) and Hs
1/2n(F)→ Hs(F). Since ε > 0 was arbitrary,

μ(F)≤ cHs(F).
(b) Fix ε,δ > 0 and consider the collection of all balls, B(x,r), with x ∈ F ,

0 < r < δ and μ(B(x,r)) ≥ (c− ε)rs. By assumption, every x ∈ F belongs to
such a ball for arbitrarily small r. By the Vitali covering lemma there are count-
ably many disjoint balls from this collection, {Bi}, such that μ(F\⋃

i
Bi) = 0 and

every ball in the collection is contained in the union of the sets B̃i, where B̃i is
a ball concentric with Bi and having five times the radius. Thus F ⊆ ⋃

i
B̃i and

∣
∣
∣B̃i

∣
∣
∣
s ≤ 10sμ(Bi)/(c− ε). As

∣
∣
∣B̃i

∣
∣
∣≤ 10δ and the sets Bi are disjoint,


