ACSP · Analog Circuits And Signal Processing

Viranjay M. Srivastava Ghanshyam Singh

MOSFET Technologies for Double-Pole Four-Throw Radio-Frequency Switch

Analog Circuits and Signal Processing

Series Editors:

Mohammed Ismail, The Ohio State University Mohamad Sawan, École Polytechnique de Montréal

For further volumes: http://www.springer.com/series/7381

Viranjay M. Srivastava • Ghanshyam Singh

MOSFET Technologies for Double-Pole Four-Throw Radio-Frequency Switch

Viranjay M. Srivastava Assistant Professor Department of Electronics and Communication Engineering Jaypee University of Information Technology Solan, Himachal Pradesh India Ghanshyam Singh Professor Department of Electronics and Communication Engineering Jaypee University of Information Technology Solan, Himachal Pradesh India

ISBN 978-3-319-01164-6 ISBN 978-3-319-01165-3 (eBook) DOI 10.1007/978-3-319-01165-3 Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013946571

© Springer International Publishing Switzerland 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Contents

1	I Introduction					
	1.1 Transceiver Systems					
	1.2	Radio	-Frequency Switches	5		
	1.3	Radio	-Frequency MOSFETs	7		
1.4 Issues of Radio-Frequency MOSFET Modeling				9		
	1.5 Double-Gate MOSFET					
	1.6	Cylind	Irical Surrounding Double-Gate MOSFET	15		
	1.7	Hafniı	Im Dioxide-Based MOSFET	16		
	1.8	Image	Acquisition of the MOSFETs	16		
	1.9	Conclu	usion	16		
	Refe	erences .		17		
2	Desi	gn of D	Double-Pole Four-Throw RF Switch	23		
	2.1	Introd	uction	23		
	2.2 Comparison of Various Switches		arison of Various Switches	23		
		2.2.1	PIN Diode Switch	24		
		2.2.2	GaAs FET Switch	24		
		2.2.3	MESFET Switch	24		
		2.2.4	MOSFET Switch	25		
		2.2.5	MEMS Switch	25		
	2.3	RF Tr	ansceiver Systems	26		
	2.4	RF Tr	ansceiver Switch	28		
	2.5	Design	n of CMOS Inverter for RF Switch	29		
	2.6	Config	guration of Switches	31		
		2.6.1	Single-Pole Single-Throw Switch	31		
		2.6.2	Single-Pole Double-Throw Switch	32		
		2.6.3	Double-Pole Double-Throw Switch	33		
		2.6.4	Double-Pole Four-Throw Switch	33		
	2.7	Design	n of DP4T RF Switch Based on Single-Gate MOSFET	34		
	2.8 Operational Characteristics of DP4T CMOS Switch					

	2.9	RF Switch Performance Parameters	37
		2.9.1 Insertion Loss	38
		2.9.2 Return Loss	38
		2.9.3 Isolation	38
		2.9.4 RF Power Handling	38
		2.9.5 Linearity	39
		2.9.6 Transition Time	39
		2.9.7 Switching Speed	39
	2.10	Topologies for DP4T Switches	39
	2.11	Conclusions	40
	Refe	rences	41
3	Desi	gn of Double-Gate MOSFET	45
-	3.1	Introduction	45
	3.2	Design Process of Double-Gate MOSFET	48
	33	Effects of Double-Gate MOSEET on the Leakage Currents	50
	0.0	3 3 1 Subthreshold Leakage	51
		3.3.2. Gate Leakage	51
		3 3 3 Band to Band Tunneling of Electrons	51
	3.4	Performance Improvement of DG MOSFET over	01
	611	SG MOSFET	53
	3.5	Resistive and Capacitive Model of DG MOSFET	00
	0.0	and SG MOSFET	56
	3.6	Characteristics of the DG MOSFET with Aspect Ratios	63
	3.7	Design of DG MOSFET with Several Gate-Fingers	66
	3.8	Model of Series and Parallel Combination	
		for Double-Gate MOSFET	73
	3.9	Conclusions	75
	Refe	rences	76
4	Daul	his Dala Faun Thuam DF Curitah Dagad	
4	Dou on D	DIE-POIE FOUF-INFOW RF SWIICH Based	05
		Introduction	0J 05
	4.1	Design of Dodio System Design	0J 05
	4.2	4.2.1 Deth Loss	03 05
		4.2.1 Pain Loss	83 86
		4.2.2 Gain Cascade	80 86
		4.2.5 1 dB Compression Point	00 07
		4.2.4 Inita-Order Intercept Point	8/ 07
		4.2.5 Inermai Noise	ð/
		4.2.0 Noise Figure	88
	12	4.2./ Phase Noise	88
	4.5	Characteristics of DD4T DC DE CMOS Switch	88
	4.4	Characteristics of DP41 DG KF CMUS SWITCh	- 90

	4.5	Effect	ive ON-State Resistance of DP4T DG RF CMOS Switch	94
		4.5.1	Parallel Combination of Resistance in a Device	96
		4.5.2	Choosing Transistor with Large Mobility	96
		4.5.3	Keeping $V_{\rm gs} - V_{\rm th}$ Large	96
		4.5.4	Aspect Ratio of a Transistor	96
	4.6	Attenu	ation of DP4T CMOS Switch	97
		4.6.1	Causes of Attenuation	100
		4.6.2	Counteracting Attenuation	100
	4.7	OFF-I	solation	101
	4.8	Resist	ive and Capacitive Model of DP4T DG RF	
		CMOS	S Switch	101
	4.9	Switch	ning Speed of DP4T DG RF CMOS Switch	103
	4.10	S-Para	ameters of DP4T DG RF CMOS Switch	103
	4.11	Conclu	usions	106
	Refe	rences		107
_	~ •			
5	Cyli	ndrical	Surrounding Double-Gate RF MOSFET	111
	5.1	Introd	uction	111
	5.2	Analy	sis of CSDG RF MOSFET	114
	5.3	Fabric	ation Process for CSDG RF MOSFET	117
	5.4	Chara	cteristics of CSDG MOSFET	118
	5.5	Resist	ive and Capacitive Model of the CSDG MOSFET	122
	5.6	Explic	tit Model of CSDG MOSFET	129
	5.7	Gate I	Leakage Current, Noise Model, and Short Channel	
		Effect	s for CSDG MOSFET	131
	5.8	Cross	talk in CSDG MOSFET Model	132
	5.9	Advar	ntages of the CSDG MOSFET Model	135
	5.10	Conclu	usions	137
	Refe	rences		138
4	Haf	.: D	iovida Basad Daubla Bala Faur Throw Daubla Cata	
U			Switch	142
	NF V	Introd	Switch	143
	0.1 6 0	MOST		145
	0.2	MOSE	$^{+}$ E1 Model with HIO ₂	140
	0.3	Fabric	ation Process of HIO ₂ -Based DG MOSFE1	14/
	6.4	Param	eters of HIO ₂ -Based MOSFET	149
		6.4.1	Oxide Capacitance per Unit Area	149
		6.4.2	Threshold Voltage	149
		6.4.3	Drain Currents	149
		6.4.4	Body Bias Effect	150
		6.4.5	Resistances	150
		6.4.6	Capacitances	150
		6.4.7	Figure of Merit	151
	6.5	Switch	ning Characteristics of HfO ₂ -Based MOSFET	151
		6.5.1	Fall Time	151
		6.5.2	Rise Time	152

		6.5.3 Maximum Signal Frequency	152
		6.5.4 Propagation Delay	152
		6.5.5 Power Dissipation	153
	6.6	DP4T Switch Design with HfO ₂ -Based DG MOSFET	153
	6.7	Characteristics of DP4T Switch with HfO ₂ -Based	
		DG MOSFET	155
		6.7.1 Drain Current Analysis	156
		6.7.2 ON/OFF Ratio and Insertion Loss	156
		6.7.3 ON-Resistance (<i>R</i> _{ON}) and Attenuation	157
		6.7.4 Flat-Band Capacitance and Dynamic Power	159
		6.7.5 Debye Length Calculation and Mobility	159
		6.7.6 Potential Barrier	160
	6.8	Conclusions	160
	Refe	rences	161
7	Test	ing of MOREETs Surfaces Using Image Acquisition	165
'	7 1	Ing of MOSFETS Surfaces Using Image Acquisition	165
	7.1	Droposed Model for the Image Acquisition of MOSEETs	165
	1.2	7.2.1 Droprocessing	160
		7.2.1 Freprocessing	167
		7.2.2 Intage Sensor	160
		7.2.5 Discrete Fourier Haustonn	160
		7.2.4 Filler Fulletion	109
		7.2.6 Postprocessing	170
		7.2.0 Postpiocessing	170
	73	/.2./ Intage Enhancement	170
	7.5	Conclusion	171
	7.4 Dofo		172
	Kele	a ences	175
8	Con	clusions and Future Scope	177
	8.1	Conclusions	177
	8.2	Future Scope	179
	Refe	rences	181
Ap	pend	ix A List of Symbols	183
Ap	pend	ix B List of Definitions	187
	-		
Ap	pend	ix C Outcomes of the Book	191
			105
Ab	out t	he Authors	193
•			10-
Inc	dex		195

List of Figures

Fig. 1.1	Simple RF transceiver architecture	3
Fig. 2.1 Fig. 2.2	Radio-frequency design hexagon A radio front-end block diagram with (a) the integration of transceiver switch and matching networks, (b) simplified schematic of a transceiver switch, and (c) typical transistor	26
Fig 23	based transceiver switch	27
Fig. 2.3	and (b) inverter circuit	30
Fig 24	Schematic of the (a) SPDT (b) DPDT and (c) DP4T	32
Fig. 2.5 Fig. 2.6	DP4T CMOS transceivers switch with single-gate transistor Schematic of the (a) basic SG MOSFET and (b) DP4T SG	34
U	RF CMOS switch	35
Fig. 2.7	Proposed DP4T switch with two transistors	35
Fig. 2.8	Proposed DP4T switch layout with two transistors	37
Fig. 3.1	Schematic of the basic n-type double-gate MOSFET	46
Fig. 3.2	Layout of (a) DG MOSFET and (b) SG MOSFET	54
Fig. 3.3	Output voltage with gate and control voltage of (a) DG	
	MOSFET and (b) SG MOSFET	55
Fig. 3.4	Drain current characteristics of (a) DG MOSFET and	
	(b) SG MOSFET	57
Fig. 3.5	Voltage gain of (a) DG MOSFET and (b) SG MOSFET	58
Fig. 3.6	Layout of (a) n-type DG MOSFET and (b) p-type DG	
	MOSFET	59
Fig. 3.7	The Circuit Models of (a) DG MOSFET and (b) SG MOSFET	
	operating as a switch at ON-state	60
Fig. 3.8	Effect of the aspect ratio (when it is 2000) on the characteristics of DG MOSFET (\mathbf{a}) drain current with gate to source voltage	
	and (b) threshold voltage with the length (nm) of the channel \ldots	64

Fig. 3.9	Effect of the aspect ratio (when it is 500) on the characteristics of DG MOSFET (a) drain current with gate to source voltage	
	and (\mathbf{b}) threshold voltage with the length (nm) of the channel	65
Fig. 3.10	Characteristics of capacitances with drain to source voltage	
8	for n-type MOSFET with the aspect ratio 2.000	66
Fig. 3.11	Layout of n-type DG MOSFET for (a) $NF = 1$	00
1 19. 0.11	and (b) $NF = 10$	67
Fig 3 12	Voltage characteristice of n-type DG MOSEET	07
115. 5.12	for (a) $NE - 1$ and (b) $NE - 10$	68
Fig 3 13	Drain current characteristics of n-type DG MOSEET	00
115. 5.15	for (a) $NF = 1$ and (b) $NF = 10$	69
Fig 3 14	Output voltage characteristics of n -type DG MOSFET	07
1 15. 5.1 1	for (a) $NF = 1$ and (b) $NF = 10$	70
Fig 315	Conversion of the series and parallel combination	70
1 ig. 5.15	of n-MOSEET/n-MOSEET to DG MOSEET	
	Case 1 Series combination of $n_{\rm MOSFET}$ to DG MOSEET	
	Case 2 Series combination of n-MOSELT to DG MOSELT.	
	Case 3. Parallel combination of p MOSTET to DG MOSTET.	
	Case 4. Parallel combination of n MOSFET to DC MOSFET.	74
	Case 4. Paraner combination of p-mOSPET to DO MOSPET	/4
Fig. 4.1	1 dB compression point	87
Fig. 4.2	Third-order intercept point	87
Fig. 4.3	Proposed DP4T DG RF CMOS switch	89
Fig. 4.4	Layout of the proposed DP4T DG RF CMOS switch	91
Fig. 4.5	Characteristics of the proposed DP4T DG RF CMOS	
e	transceiver switch such as (\mathbf{a}) applied input voltages,	
	(b) antenna voltage with input voltages, (c) drain current,	
	and (d) antenna output at various frequencies	92
Fig. 4.6	Equivalent capacitive model of the proposed DP4T DG	
U	RF CMOS switch	95
Fig. 4.7	Attenuation at $V_{CTL} = 0.7 - 1.2$ V for (a) 0.8-um technology	
8	and (b) 45-nm technology	98
Fig. 4.8	Attenuation at $V_{\text{CTL}} = -0.1 \text{ V}$ to 0.7 V for (a) 0.8-um	
1 181 110	technology and (b) 45-nm technology	98
Fig 49	Resistive and capacitive model of DP4T DG RF CMOS	20
1 18. 1.2	switch at ON-state	102
Fig 4 10	Equivalent canacitive circuit of the DP4T DG RE	102
115. 4.10	CMOS switch	104
		104
Fig. 5.1	Schematic of (a) basic DG MOSFET, (b) CSDG MOSFET,	
	and (c) cross-section of CSDG MOSFET	116
Fig. 5.2	Model of CSDG MOSFET transistor with its components	
	at ON-state	122

Fig. 5.3	Design of the CSDG MOSFET with SPICE (a) capacitive models operating as a switch at ON-state, (b) input signal applied to gates, (c) output signal at drain, (d) source current variation with frequency, and (e) drain current variation	
	with frequency	124
Fig. 5.4	Design of the CSDG MOSFET with ADS (a) capacitive	
	models operating as a switch at ON-state, (b) input signal	
	applied to both gates, and (c) output signal at drain	126
Fig. 5.5	Equivalent resistive and capacitive model of the	
	CSDG MOSFET	133
Fig. 5.6	(a) Substrate cross talk mechanism and (b) Reduction	
	of cross talk with CSDG MOSFET model	134
Fig. 6.1	Dielectric constant vs. bandgap for gate oxides	144
Fig. 6.2	Schematic of the basic n-type MOSFET (a) with HfO_2	
C	and (b) HfO ₂ film on Si-substrate	147
Fig. 6.3	Schematic of n-type DG MOSFET with HfO ₂	148
Fig. 6.4	DP4T RF CMOS switch with HfO ₂ -layered double-gate	
•	MOSFET	154
Fig. 6.5	ON/OFF ratio for the proposed DP4T RF CMOS switch	157
Fig. 6.6	Attenuation for the proposed DP4T RF CMOS switch	
-	with respect to the applied control voltage	158
Fig. 6.7	Insertion loss for the proposed DP4T RF CMOS switch	
	with the ON-state resistance	158
Fig. 7.1	Flow chart of a device testing using Image Acquisition	168
Fig. 7.2	Various images which can be obtained from the image	
C	acquisition of DG MOSFET	171
Fig. 7.3	Various images which can be obtained from the image	
e	acquisition of CSDG MOSFET	172
	-	

List of Tables

Table 1.1 Table 1.2	Electromagnetic radiation spectrum Electromagnetic radiation spectrum based on IEEE	2 3
Table 3.1	Comparison of the various circuit parameters of the DG	
Table 3.2	and SG MOSFET for proposed model Comparison of the drain current for proposed DG MOSFET	61
	model with the existing model	62
Table 3.3	Comparison of the various circuit parameters of the DG	
T 11 2 4	MOSFET for $NF = 1$ and $NF = 10$	71
Table 3.4	Design for independent gate configuration (IGC) and tied gate configuration (TGC)	74
Table 3.5	An effective aspect ratio for different combination	/4
	of transistors as shown in Fig. 3.15	75
Table 4.1	Simulation results for drain current and switching speed	
	for several switches	94
Table 4.2	Comparison of the switching speed	94
Table 4.3	Performance parameters of the double-gate MOSFET	
	transceiver switch	95
Table 4.4	DP4T DG RF CMOS switch attenuation for control	100
Table 4.5	voltage range $0.7 \text{ v} = 2.1 \text{ v}$	100
1 able 4.5	DP41 DO KF CHOS Switch allendation for control	100
T.11. 4 C	voltage range -0.1 v to 0.7 v	100
Table 4.6	Simulated parameters of the DP41 DG RF CMOS switch	104
Table 4.7	Impedance, admittance, series equivalent, and parallel	104
T-1-1- 4.0	equivalent circuit parameters of the proposed switch	104
Table 4.8	S-parameters of a designed switch at various frequencies	105
Table 1.0	(Mag. = magnitude, Ang. = angle)	105
1 auto 4.9	frequencies	105
	nequencies	105

Table 5.1	Comparison of the various circuit parameters of the CSDG	
	MOSFET and existing CSSG MOSFET model	129
Table 5.2	Advantage of the proposed CSDG MOSFET model	
	over several reported literatures for CSSG MOSFET	136
Table 6.1	Properties of hafnium dioxide	144
Table 6.2	Dielectric constant, bandgap, and conduction band offset	
	on Si of the candidate gate dielectrics	148
Table 6.3	Comparison of parameters of HfO2-based MOSFET	
	with the SiO ₂ -based MOSFET	153
Table 6.4	Working functionality of DP4T RF CMOS switch	
	with HfO ₂ DG MOSFET	155

Abstract

With the development of modern silicon technology, more and more high-frequency circuits can be implemented in standard complementary metal-oxide-semiconductor (CMOS) processes. The feasibility of RF ICs in standard CMOS process is established, and the trend in putting all components of a system on a chip includes integration of the transceiver (T/R) antenna switch.

In this book, we have designed a double-gate (DG) MOSFET and double-pole four-throw (DP4T) RF switch to enhance its performance for the next generation wireless communication systems. Further we have combined the ideas of DG MOSFET and DP4T switch to design a novel DP4T DG RF CMOS switch. The designed DP4T DG RF CMOS switch can route four inputs to two outputs at a time or vice versa. So it is twice effective as compared to the previously existing SPDT switches.

In the DG MOSFET, the gates are only on the two sides of the substrate. Hence, to utilize all the sides of the substrate, we have widened the gate all around the device and designed like a cylinder. Therefore, we extend this work to the cylindrical surrounding double-gate (CSDG) MOSFET. It has less contact area with the board compared to the other MOSFETs. Due to the circular source and drain, the gate contact with the source and drain is on a long circular region, which avoids the gate misalignment. This work has been extended by replacing SiO₂ with HfO₂ as a high dielectric material to design DG MOSFET.

Finally, we have analyzed the image acquisition of DG MOSFET and CSDG MOSFETs for the purpose of RF switch. The proposed model emphasized on the basics of single image sensor for two-dimensional images of a three-dimensional device, so that we can obtain a satisfactory device parameter.

Chapter 1 Introduction

With the development of electric telegraph by William Cooke and Charles Wheatstone, the telecommunication technology has been commercialized in 1838 [1]. This technology was rapidly replaced by Samuel Morse, with the introduction of the *Morse code* in 1844, which reduced the communication into dots and dashes, and listening to the receiver [2]. The wireless technology came to existence in 1901 when Guglielmo Marconi successfully transmitted radio signals across the Atlantic Ocean. The possibility of replacing the telegraphs and telephone communications with wave transmission is an exciting future. However, the two-way wireless communication has been materialized in the military, although it remained limited to one-way radio and television broadcasting by large and expensive stations. The ordinary two-way phone conversations would still go over wires for many decades. The invention of the large-scale integration (LSI) transistor, the development of Shannon's information theory, and the conception of the cellular system all at Bell Laboratories paved the way for affordable mobile communications.

The end of the twentieth century is remembered for the amazing growth of the telecommunication industry. The main cause for this event is the introduction of digital signal processing in the wireless communications, driven by the development of high-performance low-cost CMOS technologies for very-large-scale integration (VLSI). However, the radio-frequency (RF) analog front end remains the bottleneck for low-cost RF systems. The RF front-end design is pushed towards higher levels of integration and integration in low-cost CMOS technology, rendering significant space, cost, and power reductions. The cellular phones are no doubt the most popular wireless communication device currently in use. However, such a system can be divided into the user part (handset) and the infrastructure part (base stations). The user part consists of a transmitter and a receiver commonly known as transceiver system [3, 4].

The radio spectrum refers to the part of the electromagnetic spectrum corresponding to the radio frequencies (below 300 GHz). However, different parts of the radio spectrum are used for different radio transmission technologies and applications. The radio spectrum is typically government regulated in the developed countries and is sold or licensed to operators of private radio

Frequency	Abbreviation	Frequency range	Wavelength
Tremendously low frequency	TLF	Below 3 Hz	Above 10 ⁵ km
Extremely low frequency	ELF	3–30 Hz	$10^4 - 10^5 \text{ km}$
Super low frequency	SLF	30–300 Hz	$10^3 - 10^4$ km
Ultra low frequency	ULF	300–3,000 Hz	100–10 ³ km
Very low frequency	VLF	3–30 kHz	10-100 km
Low frequency	LF	30–300 kHz	1–10 km
Medium frequency	MF	300 kHz-3 MHz	100 m-1 km
High frequency	HF	3-30 MHz	10–100 m
Very high frequency	VHF	30-300 MHz	1–10 m
Ultra high frequency	UHF	300 MHz-3 GHz	10 cm-1 m
Super high frequency	SHF	3–30 GHz	1-10 cm
Extremely high frequency	EHF	30-300 GHz	1 mm-1 cm
Tremendously high frequency/far infrared	THF/THz/FIR	300 GHz-3 THz	0.1–1 mm
Mid infrared	MIR	3–30 THz	10 µm–0.1 mm
Near infrared	NIR	30-300 THz	1–10 µm
Near ultraviolet	NUV	300 THz-3 PHz	0.1–1 μm
Extreme ultraviolet	EUV	3-30 PHz	10 nm–0.1 μm
Soft X-rays	SX	30-300 PHz	1-10 nm
Soft X-rays	SX	300 PHz-3 EHz	0.1–1 nm
Hard X-rays	HX	3-30 EHz	10 pm-0.1 nm
Gamma rays	Y	30-300 EHz	1–10 pm

Table 1.1 Electromagnetic radiation spectrum

transmission systems for the purpose of telecommunication or broadcast for television stations. To prevent interference and allow for efficient use of the radio spectrum, similar services are allocated in the bands. For example, the broadcasting, mobile radio, or navigation devices will be allocated in non-overlapping ranges of frequencies. However, each frequency range/band behaves differently and performs different functions and shared by civil, government, and military users of all nations according to International Telecommunications Union (ITU) radio regulations. For the communication purposes, the usable frequency range is in the range from 3 Hz to 300 GHz. In some cases, 100 THz is used for research purposes. These ranges of the frequency bands are given in Tables 1.1 and 1.2. The frequency band standards are also available in International Telecommunications Union radio regulations.

1.1 Transceiver Systems

With the development of wireless communication technology, the demand of high data rate wireless local area network (WLAN) systems is growing rapidly. The heterodyne receiver architecture is the most commonly used receiver architecture in the wireless communication systems. Due to the reduction of complexity and power

Table 1.2 Electromagnetic	Frequency	Abbreviation	Frequency range	
on IFFF	High frequency	HF band	3-30 MHz	
on ille	Very high frequency	VHF band	30-300 MHz	
	Long wave	L band	1–2 GHz	
	Short wave	S band	2–4 GHz	
	Compromise between S and X	C band	4–8 GHz	
	Crosshair	X band	8–12 GHz	
	Kurz-under	K _u band	12–18 GHz	
	German Kurz (short)	K band	18–27 GHz	
	Kurz-above	K _a band	27–40 GHz	
	V band	V band	40–75 GHz	
	W band	W band	75–110 GHz	
	Long wave	G band	110-300 GHz	

Fig. 1.1 Simple RF transceiver architecture [10]

consumption. The direct down-conversion architecture has become more popular nowadays. However, compared to the heterodyne architecture, it is easier to integrate the complete system on a single chip. Various technologies such as BiCMOS, SiGe HBT, and Bipolar are used to design radio-frequency (RF) switches; however, CMOS technology is very suitable for integration of both analog and digital circuits on a single chip. So the CMOS technology is preferred for implementation of RF front-end circuitry.

A basic heterodyne RF transceiver front-end system is shown in Fig. 1.1. In this architecture, the received RF signals are first passed through a band-pass filter and then switched to an low noise amplifier (LNA). Due to its gain, the LNA essentially sets the signal-to-noise ratio for the receiver chain. The amplified signals are filtered for improved image rejection and down-converted to an intermediate frequency (IF) with a mixer. The signals at IF are then filtered for channel selection and shifted in frequency to baseband by a second mixer [5–7]. However, the transmission process is complementary to the reception process. During the transmission, the signals at baseband are up-converted to the RF carrier using an IF stage. The power

amplifier (PA) is used to drive the antenna. A transceiver (T/R) switch is used to connect/disconnect the antenna for transmit and receive processes. The direct down-conversion or homodyne architecture mixes the incoming RF signals with the carrier frequency to generate signals directly at baseband. Similarly, the signals are directly up-converted to the RF carrier using only one mixing step during transmission. The integrated circuit design industry is increasingly improving the direct down-conversion architectures to facilitate further integration by reducing the number of components required. This architecture uses standard CMOS technology and includes an LNA and PA on the same piece of silicon.

However, highly integrated transceiver solutions for the 802.11b/g standards have also been presented by Chien [8] and Kluge [9]. Among the component blocks of Fig. 1.1, the transceiver switch stands out as a candidate for on-chip integration because the MOSFET device is optimized to operate as a switch. In early days, the radio transceiver switches have been designed using PIN diode and FET, which consume more power. As the modern portable devices demand less power consumption switches, therefore the PIN diodes and FETs are gradually replaced by the MOSFETs such as n-type MOSFET and p-type MOSFET [10–12]. The MOSFET analog switches use the MOSFET channel as a low ON-state resistance switch to pass analog signals at switch-ON condition and as high impedance at switch-OFF condition and the signals flow in both directions across a MOSFET switch. The source is a negative side for n-type MOSFET or more positive side for p-type MOSFET. All of these switches are limited on what signals they can pass or stop by their gate–source voltage, gate–drain voltage, and source–drain voltages; exceeding the voltage, current, or power limits will potentially damage the switch.

In the latest technologies, CMOS fabrications have resulted in deep submicron transistors with higher transit frequencies and lower noise figures, so the trend started to explore the use of CMOS technology in RF circuits. This is also in the view of a system on a chip realization, where digital, mixed-signal baseband, and HF transceiver blocks would be integrated on a single chip. This technique has the ability to integrate RF circuits. Other advantages offered by silicon CMOS technologies are the low cost due to the volume of wafers processed and the low power consumption feature of MOSFETs, which makes it suitable for portable applications. It has been known that for analog and RF applications, the accuracy of circuit simulations is strongly determined by the device models. However, the accurate device models become crucial to correctly predict the circuit performance.

The RF/microwave switching elements using silicon CMOS technology are being investigated and presented as an alternative to the traditional PIN diode and GaAs MESFET devices. The silicon CMOS RF switching elements are attractive because of their potential application in all silicon monolithic CMOS solutions for completely integrated baseband and RF functions in low-cost wireless, mobile satellite, and personal communication systems. RF switches can be used at several places in RF front ends. In a transceiver switch, a double-pole single-throw (DPST) arrangement of switches multiplexes the use of the antenna between the PA and LNA. The transceiver switches must have a high linearity to ensure that the highpower signals (~2 W) at the output of the PA are transmitted to the antenna with minimum distortion [13, 14]. This linearity requirement presents a challenge to integrate transceiver switches into on-chip designs especially as the supply voltage in standard CMOS continues to decrease.

In addition to the transceiver switch application mentioned above, RF switches could be used to select capacitors, for example, tuning of a voltage-controlled oscillator (VCO). In this application, the potential challenge is to obtain a low ON-state resistance and a low OFF-state capacitance. In a given technology, the ON-state resistance and OFF-state capacitance are inversely related to each other since the resistance–capacitance product in a modern CMOS technology is not as low as desired [15, 16].

In the receiver part of the communication system (a handset), low-noise RF transistors are used to amplify the incoming signals. As in any LNA, the use of low or minimum noise figure transistors is desired. The noise requirements for the RF devices for this application are, however, not as stringent as those for the satellite communications. In wireless communications, the receiver experiences the noise of the environment, which is interference-dominated, whereas in the satellite communications, the signal comes from the sky with less background noise [17].

Consequently, for the wireless communications, the noise produced intrinsically in the RF devices is somewhat negligible comparing to that from the noisy environment. However, another requirement for the communication system is the reduction of power consumption. At present, a supply voltage of 3 V has been established as a standard [18]. To deliver a high output power combined with a high efficiency at a limited supply voltage of 3 V, RF power transistors possessing a large ON-state current and a low ON-state resistance are required in the transmit section of the handset.

1.2 Radio-Frequency Switches

In the radio transceiver of the advanced communication systems, multiple antenna system is used to replace the traditional single antenna circuitry to improve the transmission capability and reliability. In the antenna selection system, the signals from a subset of the antennas are processed at any time by the limited bandwidth of RF, which is available for the receiver. Hence, the transmitter needs to send pilots multiple times to enable the receiver to estimate the channel state of all the antennas and select the best subset. With the multiple antennas, the data transfer rate can be increased by the same factor. For example, if we have *n* antennas as $a_1, a_2, a_3, \ldots, a_n$ used in the transceiver, then data transfer rate will increased by factor of *n* as it is number of antenna used. For such communication system, the antenna selection and switch mechanism is essential to circumvent the uses of several RF chains, associated with the various antennas. The desired switching system must have a simple and low-cost structure which also confined all the improvement of multiple-input, multiple-output (MIMO) systems [19, 20].