Search and Find

Book Title

Author/Publisher

Table of Contents

Show eBooks for my device only:

 

Mathematics for Neuroscientists

Mathematics for Neuroscientists

of: Fabrizio Gabbiani, Steven James Cox

Elsevier Trade Monographs, 2010

ISBN: 9780080890494 , 498 Pages

Format: PDF, ePUB, Read online

Copy protection: DRM

Windows PC,Mac OSX geeignet für alle DRM-fähigen eReader Apple iPad, Android Tablet PC's Apple iPod touch, iPhone und Android Smartphones Read Online for: Windows PC,Mac OSX,Linux

Price: 89,95 EUR



More of the content

Mathematics for Neuroscientists


 

Front cover

1

Mathematics for Neuroscientists

4

Copyright page

5

Full Contents

8

Preface

12

Chapter 1. Introduction

14

1.1. How to Use This Book

15

1.2. Brain Facts Brief

15

1.3. Mathematical Preliminaries

17

1.4. Units

20

1.5. Sources

21

Chapter 2. The Passive Isopotential Cell

22

2.1. Introduction

22

2.2. The Nernst Potential

24

2.3. Membrane Conductance

25

2.4. Membrane Capacitance and Current Balance

25

2.5. Synaptic Conductance

27

2.6. Summary and Sources

28

2.7. Exercises

29

Chapter 3. Differential Equations

34

3.1. Exact Solution

34

3.2. Moment Methods*

36

3.3. The Laplace Transform*

38

3.4. Numerical Methods

40

3.5. Synaptic Input

41

3.6. Summary and Sources

42

3.7. Exercises

42

Chapter 4. The Active Isopotential Cell

46

4.1. The Delayed Rectifier Potassium Channel

47

4.2. The Sodium Channel

49

4.3. The Hodgkin–Huxley Equations

50

4.4. The Transient Potassium Channel*

53

4.5. Summary and Sources

56

4.6. Exercises

56

Chapter 5. The Quasi-Active Isopotential Cell

62

5.1. The Quasi-Active Model

62

5.2. Numerical Methods

64

5.3. Exact Solution via Eigenvector Expansion

67

5.4. A Persistent Sodium Current*

71

5.5. A Nonspecific Cation Current that is Activated by Hyperpolarization*

72

5.6. Summary and Sources

73

5.7. Exercises

74

Chapter 6. The Passive Cable

80

6.1. The Discrete Passive Cable Equation

80

6.2. Exact Solution Via Eigenvector Expansion

82

6.3. Numerical Methods

84

6.4. The Passive Cable Equation

86

6.5. Synaptic Input

91

6.6. Summary and Sources

94

6.7. Exercises

95

Chapter 7. Fourier Series and Transforms

100

7.1. Fourier Series

100

7.2. The Discrete Fourier Transform

102

7.3. The Continuous Fourier Transform

107

7.4. Reconciling the Discrete and Continuous Fourier Transforms

108

7.5. Summary and Sources

111

7.6. Exercises

111

Chapter 8. The Passive Dendritic Tree

116

8.1. The Discrete Passive Tree

116

8.2. Eigenvector Expansion

118

8.3. Numerical Methods

120

8.4. The Passive Dendrite Equation

123

8.5. The Equivalent Cylinder*

124

8.6. Branched Eigenfunctions*

126

8.7. Summary and Sources

128

8.8. Exercises

128

Chapter 9. The Active Dendritic Tree

132

9.1. The Active Uniform Cable

133

9.2. On the Interaction of Active Uniform Cables*

135

9.3. The Active Nonuniform Cable

138

9.4. The Quasi-Active Cable*

143

9.5. The Active Dendritic Tree

147

9.6. Summary and Sources

149

9.7. Exercises

149

Chapter 10. Reduced Single Neuron Models

156

10.1. The Leaky Integrate-and-Fire Neuron

156

10.2. Bursting Neurons

159

10.3. Simplified Models of Bursting Neurons

160

10.4. Summary and Sources

165

10.5. Exercises

166

Chapter 11. Probability and Random Variables

168

11.1. Events and Random Variables

168

11.2. Binomial Random Variables

170

11.3. Poisson Random Variables

172

11.4. Gaussian Random Variables

172

11.5. Cumulative Distribution Functions

173

11.6. Conditional Probabilities*

174

11.7. Sum of Independent Random Variables*

175

11.8. Transformation of Random Variables*

176

11.9. Random Vectors*

177

11.10. Exponential and Gamma Distributed Random Variables

180

11.11. The Homogeneous Poisson Process

181

11.12. Summary and Sources

183

11.13. Exercises

183

Chapter 12. Synaptic Transmission and Quantal Release

188

12.1. Basic Synaptic Structure and Physiology

188

12.2. Discovery of Quantal Release

190

12.3. Compound Poisson Model of Synaptic Release

191

12.4. Comparison with Experimental Data

193

12.5. Quantal Analysis at Central Synapses

194

12.6. Facilitation, Potentiation, and Depression of Synaptic Transmission

196

12.7. Models of Short-Term Synaptic Plasticity

199

12.8. Summary and Sources

202

12.9. Exercises

203

Chapter 13. Neuronal Calcium Signaling*

206

13.1. Voltage-Gated Calcium Channels

208

13.2. Diffusion, Buffering, and Extraction of Cytosolic Calcium

211

13.3. Calcium Release from the ER

214

13.4. Calcium in Spines

222

13.5. Presynaptic Calcium and Transmitter Release

226

13.6. Summary and Sources

230

13.7. Exercises

230

Chapter 14. The Singular Value Decomposition and Applications*

236

14.1. The Singular Value Decomposition

236

14.2. Principal Component Analysis and Spike Sorting

239

14.3. Synaptic Plasticity and Principal Components

241

14.4. Neuronal Model Reduction via Balanced Truncation

243

14.5. Summary and Sources

246

14.6. Exercises

246

Chapter 15. Quantification of Spike Train Variability

250

15.1. Interspike Interval Histograms and Coefficient of Variation

251

15.2. Refractory Period

252

15.3. Spike Count Distribution and Fano Factor

253

15.4. Renewal Processes

253

15.5. Return Maps and Empirical Correlation Coefficient

256

15.6. Summary and Sources

258

15.7. Exercises

259

Chapter 16. Stochastic Processes

264

16.1. Definition and General Properties

264

16.2. Gaussian Processes

265

16.3. Point Processes

267

16.4. The Inhomogeneous Poisson Process

270

16.5. Spectral Analysis

272

16.6. Summary and Sources

275

16.7. Exercises

275

Chapter 17. Membrane Noise*

280

17.1. Two-State Channel Model

280

17.2. Multistate Channel Models

283

17.3. The Ornstein–Uhlenbeck Process

284

17.4. Synaptic Noise

285

17.5. Summary and Sources

288

17.6. Exercises

288

Chapter 18. Power and Cross Spectra

292

18.1. Cross Correlation and Coherence

292

18.2. Estimator Bias and Variance

293

18.3. Numerical Estimate of the Power Spectrum*

295

18.4. Summary and Sources

299

18.5. Exercises

299

Chapter 19. Natural Light Signals and Phototransduction

304

19.1. Wavelength and Intensity

304

19.2. Spatial Properties of Natural Light Signals

306

19.3. Temporal Properties of Natural Light Signals

306

19.4. A Model of Phototransduction

307

19.5. Summary and Sources

310

19.6. Exercises

311

Chapter 20. Firing Rate Codes and Early Vision

312

20.1. Definition of Mean Instantaneous Firing Rate

312

20.2. Visual System and Visual Stimuli

313

20.3. Spatial Receptive Field of Retinal Ganglion Cells

314

20.4. Characterization of Receptive Field Structure

316

20.5. Spatio-Temporal Receptive Fields

319

20.6. Static Nonlinearities*

321

20.7. Summary and Sources

321

20.8. Exercises

322

Chapter 21. Models of Simple and Complex Cells

324

21.1. Simple Cell Models

324

21.2. Nonseparable Receptive Fields

331

21.3. Receptive Fields of Complex Cells

333

21.4. Motion-Energy Model

334

21.5. Hubel–Wiesel Model

334

21.6. Multiscale Representation of Visual Information

335

21.7. Summary and Sources

336

21.8. Exercises

336

Chapter 22. Stochastic Estimation Theory

340

22.1. Minimum Mean Square Error Estimation

340

22.2. Estimation of Gaussian Signals*

342

22.3. Linear Nonlinear (LN) Models*

344

22.4. Summary and Sources

345

22.5. Exercises

345

Chapter 23. Reverse-Correlation and Spike Train Decoding

348

23.1. Reverse-Correlation

348

23.2. Stimulus Reconstruction

351

23.3. Summary and Sources

353

23.4. Exercises

353

Chapter 24. Signal Detection Theory

356

24.1. Testing Hypotheses

356

24.2. Ideal Decision Rules

359

24.3. ROC Curves*

361

24.4. Multidimensional Gaussian Signals*

361

24.5. Fisher Linear Discriminant*

364

24.6. Summary and Sources

367

24.7. Exercises

367

Chapter 25. Relating Neuronal Responses and Psychophysics

368

25.1. Single Photon Detection

368

25.2. Signal Detection Theory and Psychophysics

372

25.3. Motion Detection

374

25.4. Summary and Sources

376

25.5. Exercises

377

Chapter 26. Population Codes*

380

26.1. Cartesian Coordinate Systems

380

26.2. Overcomplete Representations

382

26.3. Frames

383

26.4. Maximum Likelihood

385

26.5. Estimation Error and the Cramer–Rao Bound*

387

26.6. Population Coding in the Superior Colliculus

388

26.7. Summary and Sources

389

26.8. Exercises

391

Chapter 27. Neuronal Networks

394

27.1. Hopfield Networks

395

27.2. Leaky Integrate-and-Fire Networks

396

27.3. Leaky Integrate-and-Fire Networks with Plastic Synapses

402

27.4. Hodgkin–Huxley Based Networks

405

27.5. Hodgkin–Huxley Based Networks with Plastic Synapses

410

27.6. Rate Based Networks

411

27.7. Brain Maps and Self-Organizing Maps

414

27.8. Summary and Sources

416

27.9. Exercises

417

Chapter 28. Solutions to Selected Exercises

422

28.1. Chapter 2

422

28.2. Chapter 3

424

28.3. Chapter 4

426

28.4. Chapter 5

427

28.5. Chapter 6

429

28.6. Chapter 7

432

28.7. Chapter 8

434

28.8. Chapter 9

435

28.9. Chapter 10

435

28.10. Chapter 11

436

28.11. Chapter 12

441

28.12. Chapter 13

443

28.13. Chapter 14

444

28.14. Chapter 15

446

28.15. Chapter 16

449

28.16. Chapter 17

455

28.17. Chapter 18

458

28.18. Chapter 19

465

28.19. Chapter 20

466

28.20. Chapter 21

466

28.21. Chapter 22

468

28.22. Chapter 23

471

28.23. Chapter 24

472

28.24. Chapter 25

477

28.25. Chapter 26

479

28.26. Chapter 27

483

References

486

Index

496